Skip to main content
Log in

Comparative Neuroprotective Effects of Rasagiline and Aminoindan with Selegiline on Dexamethasone-Induced Brain Cell Apoptosis

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Stress can affect the brain and lead to depression; however, the molecular pathogenesis is unclear. An association between stress and stress-induced hypersecretion of glucocorticoids occurs during stress. Dexamethasone (a synthetic glucocorticoid steroid) has been reported to induce apoptosis and increase the activity of monoamine oxidase (MAO) (Youdim et al. 1989). MAO is an enzyme for the degradation of aminergic neurotransmitters; dopamine, noradrenaline and serotonin and dietary amines and MAO inhibitors are classical antidepressant drugs. In this study, we have compared the ability of rasagiline (Azilect) and its main metabolite, R-aminoindan with selegiline (Deprenyl) in prevention of dexamethasone-induced brain cell death employing human neuroblastoma SH-SY5Y cells and glioblastoma 1242-MG cells. Dexamethasone reduced cell viability as measured by MTT test, but rasagiline, selegiline, and 1-R-aminoindan could significantly prevent dexamethasone-induced brain cell death. Among three drugs, rasagiline had the highest neuroprotective effect. Furthermore, the inhibitory effects of these drugs on MAO B catalytic activity and on apoptotic DNA damage (TUNEL staining) were examined. Rasagiline exhibited highest inhibition on MAO B enzymatic activity and prevention on DNA damage as compared to selegiline and 1-R-aminoindan. In summary, the greater neuroprotective effect of rasagiline may be associated with the combination of the parent drug and its metabolite 1-R-aminoindan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bar-Am O, Weinreb O, Amit T, Youdim MB (2005) Regulation of Bcl-2 family proteins, neurotrophic factors, and APP processing in the neurorescue activity of propargylamine. FASEB J 19:1899–1901

    PubMed  CAS  Google Scholar 

  • Bar-Am O, Amit T, Youdim MB (2007) Aminoindan and hydroxyaminoindan, metabolites of rasagiline and ladostigil, respectively, exert neuroprotective properties in vitro. J Neurochem 103:500–508

    Article  PubMed  CAS  Google Scholar 

  • Carlo P, Violani E, Del Rio M, Olasmaa M, Santagati S, Maggi A, Picotti GB (1996) Monoamine oxidase B expression is selectively regulated by dexamethasone in cultured rat astrocytes. Brain Res 711:175–183

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A, Adolfsson R, Aquilonius SM, Gottfries CG, Oreland L, Svennerholm L, Winblad B (1980) Biogenic amines in human brain in normal aging, senile dementia, and chronic alcoholism. Adv Biochem Psychopharmacol 23:295–304

    PubMed  CAS  Google Scholar 

  • de Kloet ER, Reul JM, Sutanto W (1990) Corticosteroids and the brain. J Steroid Biochem Mol Biol 37:387–394

    Article  PubMed  Google Scholar 

  • Dolmatov IY, Dolmatova LS, Shitkova OA, Kovaleva AL (2004) Dexamethasone-induced apoptosis in phagocytes of holothurians. Taylor & Francis Group, London

    Google Scholar 

  • Duval F, Mokrani MC, Monreal-Ortiz JA, Fattah S, Champeval C, Schulz P, Macher JP (2006) Cortisol hypersecretion in unipolar major depression with melancholic and psychotic features: dopaminergic, noradrenergic and thyroid correlates. Psychoneuroendocrinology 31:876–888

    Article  PubMed  CAS  Google Scholar 

  • Edelstein SB, Breakefield XO (1986) Monoamine oxidases A and B are differentially regulated by glucocorticoids and “aging” in human skin fibroblasts. Cell Mol Neurobiol 6:121–150

    Article  PubMed  CAS  Google Scholar 

  • Fernandez HH, Chen JJ (2007) Monamine oxidase inhibitors: current and emerging agents for Parkinson disease. Clin Neuropharmacol 30:150–168

    Article  PubMed  CAS  Google Scholar 

  • Geha RM, Rebrin I, Chen K, Shih JC (2001) Substrate and inhibitor specificities for human monoamine oxidase A and B are influenced by a single amino acid. J Biol Chem 276:9877–9882

    Article  PubMed  CAS  Google Scholar 

  • Glick RD, Medary I, Aronson DC, Scotto KW, Swendeman SL, La Quaglia MP (2000) The effects of serum depletion and dexamethasone on growth and differentiation of human neuroblastoma cell lines. J Pediatr Surg 35:465–472

    Article  PubMed  CAS  Google Scholar 

  • Goodnick PJ (2007) Seligiline transdermal system in depression. Expert Opin Pharmacother 8:59–64

    Article  PubMed  CAS  Google Scholar 

  • Hughes (2008) New hope for Parkinson’s disease progression delay. Nat Rev Drug Discov 7:791

    Article  CAS  Google Scholar 

  • Jacobs CM, Trinh MD, Rootwelt T, Lomo J, Paulsen RE (2006) Dexamethasone induces cell death which may be blocked by NMDA receptor antagonists but is insensitive to Mg2+ in cerebellar granule neurons. Brain Res 1070:116–123

    Article  PubMed  CAS  Google Scholar 

  • Johnson S, Williams AN, Johnson C, Ou XM (2007) The effects of antidepressant drug on ethanol-induced cell death. Drug Discov Ther 1:130–135

    Google Scholar 

  • Kato M, Katayama T, Iwata H, Yamamura M, Matsuoka Y, Narita H (1998) In vivo characterization of T-794, a novel reversible inhibitor of monoamine oxidase-A, as an antidepressant with a wide safety margin. J Pharmacol Exp Ther 284:983–990

    PubMed  CAS  Google Scholar 

  • Lakhani SA, Masud A, Kuida K, Porter GA Jr, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851

    Article  PubMed  CAS  Google Scholar 

  • Lee AL, Ogle WO, Sapolsky RM (2002) Stress and depression: possible links to neuron death in the hippocampus. Bipolar Disord 4:117–128

    Article  PubMed  CAS  Google Scholar 

  • Malorni W, Giammarioli AM, Matarrese P, Pietrangeli P, Agostinelli E, Ciaccio A, Grassilli E, Mondovi B (1998) Protection against apoptosis by monoamine oxidase A inhibitors. FEBS Lett 426:155–159

    Article  PubMed  CAS  Google Scholar 

  • Mann JJ, Kaplan RD, Bird ED (1986) Elevated postmortem monoamine oxidase B activity in the caudate nucleus in Huntington’s disease compared to schizophrenics and controls. J Neural Transm 65:277–283

    Article  PubMed  CAS  Google Scholar 

  • Maruyama W, Akao Y, Youdim MB, Davis BA, Naoi M (2001) Transfection-enforced Bcl-2 overexpression and an anti-Parkinson drug, rasagiline, prevent nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase induced by an endogenous dopaminergic neurotoxin, N-methyl(R)salsolinol. J Neurochem 78:727–735

    Article  PubMed  CAS  Google Scholar 

  • Murphy BE (1997) Antiglucocorticoid therapies in major depression: a review. Psychoneuroendocrinology 22:S125–S132

    Article  PubMed  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006a) Glucocorticoid and androgen activation of monoamine oxidase A is regulated differently by R1 and Sp1. J Biol Chem 281:21512–21525

    Article  PubMed  CAS  Google Scholar 

  • Ou XM, Chen K, Shih JC (2006b) Monoamine oxidase A and repressor R1 are involved in apoptotic signaling pathway. Proc Natl Acad Sci U S A 103:10923–10928

    Article  PubMed  CAS  Google Scholar 

  • Paterson IA, Barber AJ, Gelowitz DL, Voll C (1997) (-)Deprenyl reduces delayed neuronal death of hippocampal pyramidal cells. Neurosci Biobehav Rev 21:181–186

    Article  PubMed  CAS  Google Scholar 

  • Phillips AJ, Sudbery I, Ramsdale M (2003) Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc Natl Acad Sci USA 100:14327–14332

    Article  PubMed  CAS  Google Scholar 

  • Robinson DS, Amsterdam JD (2007) The selegiline transdermal system in major depressive disorder: a systematic review of safety and tolerability. J Affect Disord 105:15–23

    Article  PubMed  CAS  Google Scholar 

  • Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber G, Loffler J, Richards JG (1994) Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography. Neuroscience 62:15–30

    Article  PubMed  CAS  Google Scholar 

  • Schneider G, Oepen H, von Wedel HR (1981) Monoamine oxidase activity in brain regions and organs of patients with Parkinson’s disease and Huntington’s disease and serum MAO activity of patients with Huntington’s disease as compared with neurologically healthy individuals. Arch Psychiatr Nervenkr 230:5–15

    Article  PubMed  CAS  Google Scholar 

  • Senatorov VV, Charles V, Reddy PH, Tagle DA, Chuang DM (2003) Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington’s disease. Mol Cell Neurosci 22:285–297

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Chen K, Ridd MJ (1999) Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 22:197–217

    Article  PubMed  CAS  Google Scholar 

  • Slotkin TA, Seidler FJ, Ritchie JC (1998) Effects of aging and glucocorticoid treatment on monoamine oxidase subtypes in rat cerebral cortex: therapeutic implications. Brain Res Bull 47:345–348

    Article  PubMed  CAS  Google Scholar 

  • Tariot PN, Cohen RM, Sunderland T, Newhouse PA, Yount D, Mellow AM, Weingartner H, Mueller EA, Murphy DL (1987) L-deprenyl in Alzheimer’s disease. Preliminary evidence for behavioral change with monoamine oxidase B inhibition. Arch Gen Psychiatry 44:427–433

    PubMed  CAS  Google Scholar 

  • Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB, Stupak DP, Sugrue MM, Tatton NA (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm Suppl 60:77–100

    PubMed  Google Scholar 

  • Volz HP, Gleiter CH (1998) Monoamine oxidase inhibitors. A perspective on their use in the elderly. Drugs Aging 13:341–355

    Article  PubMed  CAS  Google Scholar 

  • Weinreb O, Amit T, Bar-Am O, Chillag-Talmor O, Youdim MB (2005) Novel neuroprotective mechanism of action of rasagiline is associated with its propargyl moiety: interaction of Bcl-2 family members with PKC pathway. Ann NY Acad Sci 1053:348–355

    Article  PubMed  CAS  Google Scholar 

  • Wolkowitz OM, Reus VI (1999) Treatment of depression with antiglucocorticoid drugs. Psychosom Med 61:698–711

    PubMed  CAS  Google Scholar 

  • Youdim MB (2006) The path from anti Parkinson drug selegiline and rasagiline to multifunctional neuroprotective anti Alzheimer drugs ladostigil and m30. Curr Alzheimer Res 3:541–550

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Banerjee DK, Kelner K, Offutt L, Pollard HB (1989) Steroid regulation of monoamine oxidase activity in the adrenal medulla. FASEB J 3:1753–1759

    PubMed  CAS  Google Scholar 

  • Youdim MB, Gross A, Finberg JP (2001a) Rasagiline [N-propargyl-1R(+)-aminoindan], a selective and potent inhibitor of mitochondrial monoamine oxidase B. Br J Pharmacol 132:500–506

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Wadia A, Tatton W, Weinstock M (2001b) The anti-Parkinson drug rasagiline and its cholinesterase inhibitor derivatives exert neuroprotection unrelated to MAO inhibition in cell culture and in vivo. Ann NY Acad Sci 939:450–458

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Maruyama W, Naoi M (2005a) Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drugs Today (Barc) 41:369–391

    Article  CAS  Google Scholar 

  • Youdim MB, Bar-Am O, Yogev-Falach M, Weinreb O, Maruyama W, Naoi M, Amit T (2005b) Rasagiline: neurodegeneration, neuroprotection, and mitochondrial permeability transition. J Neurosci Res 79:172–179

    Article  PubMed  CAS  Google Scholar 

  • Youdim MB, Edmondson D, Tipton KF (2006) The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 7:295–309

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Public Health Service Grants P20 RR17701, a NARSAD Young Investigator Award and an Intramural Research Support grant from The University of Mississippi Medical Center. Shawna Tazik and Shakevia Johnson were supported by the Neuroscience Summer Scholars Program (Department of Psychiatry, University of Mississippi Medical Center) We acknowledge Teva Pharmaceutical Co. (Israel) and Hailin Zheng for synthesizing rasagiline and Dr. B. Westermark for providing 1242-MG cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Ou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tazik, S., Johnson, S., Lu, D. et al. Comparative Neuroprotective Effects of Rasagiline and Aminoindan with Selegiline on Dexamethasone-Induced Brain Cell Apoptosis. Neurotox Res 15, 284–290 (2009). https://doi.org/10.1007/s12640-009-9030-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9030-4

Keywords

Navigation