Skip to main content
Log in

Expression Profile of Rat Hippocampal Neurons Treated with the Neuroprotective Compound 2,4-Dinitrophenol: Up-Regulation of cAMP Signaling Genes

  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

2,4-Dinitrophenol (DNP) is classically known as a mitochondrial uncoupler and, at high concentrations, is toxic to a variety of cells. However, it has recently been shown that, at subtoxic concentrations, DNP protects neurons against a variety of insults and promotes neuronal differentiation and neuritogenesis. The molecular and cellular mechanisms underlying the beneficial neuroactive properties of DNP are still largely unknown. We have now used DNA microarray analysis to investigate changes in gene expression in rat hippocampal neurons in culture treated with low micromolar concentrations of DNP. Under conditions that did not affect neuronal viability, high-energy phosphate levels or mitochondrial oxygen consumption, DNP induced up-regulation of 275 genes and down-regulation of 231 genes. Significantly, several up-regulated genes were linked to intracellular cAMP signaling, known to be involved in neurite outgrowth, synaptic plasticity, and neuronal survival. Differential expression of specific genes was validated by quantitative RT-PCR using independent samples. Results shed light on molecular mechanisms underlying neuroprotection by DNP and point to possible targets for development of novel therapeutics for neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abel T, Kandel E (1998) Positive and negative regulatory mechanisms that mediate long-term memory storage. Brain Res Brain Res Rev 26:360–378

    Article  PubMed  CAS  Google Scholar 

  • Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Belfield JL, Whittaker C, Cader MZ, Chawla S (2006) Differential effects of Ca2+ and cAMP on transcription mediated by MEF2D and cAMP-response element-binding protein in hippocampal neurons. J Biol Chem 281:27724–27732

    Article  PubMed  CAS  Google Scholar 

  • Blalock EM, Chen KC, Stromberg AJ, Norris CM, Kadish I, Kraner SD, Porter NM, Landfield PW (2005) Harnessing the power of gene microarrays for the study of brain aging and Alzheimer's disease: statistical reliability and functional correlation. Ageing Res Rev 4:481–512

    PubMed  CAS  Google Scholar 

  • Bourtchouladze R, Patterson SL, Kelly MP, Kreibich A, Kandel ER, Abel T (2006) Chronically increased Gsalpha signaling disrupts associative and spatial learning. Learn Mem 13(6):745–752

    Article  PubMed  CAS  Google Scholar 

  • Brand MD (2000) Uncoupling to survive? The role of mitochondrial inefficiency in ageing. Exp Gerontol 35:811–820

    Article  PubMed  CAS  Google Scholar 

  • Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7:552–560

    Article  PubMed  CAS  Google Scholar 

  • Cardoso I, Merlini G, Saraiva MJ (2003) 4′-Iodo-4′-deoxydoxorubicin and tetracyclines disrupt transthyretin amyloid fibrils in vitro producing noncytotoxic species: screening for TTR fibril disrupters. FASEB J 17:803–809

    Article  PubMed  CAS  Google Scholar 

  • Carlezon WA Jr, Duman RS, Nestler EJ (2005) The many faces of CREB. Trends Neurosci 28:436–445

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Ferreira ST (2006) Novel neuroprotective, neuritogenic and anti-amyloidogenic properties of 2,4-dinitrophenol: the gentle face of Janus. IUBMB Life 58:185–191

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Houzel JC, Garcia-Abreu J, Louzada PR Jr, Afonso RC, Meirelles MN, Lent R, Neto VM, Ferreira ST (2001) Inhibition of Alzheimer’s disease beta-amyloid aggregation, neurotoxicity, and in vivo deposition by nitrophenols: implications for Alzheimer’s therapy. FASEB J 15:1297–1299

    PubMed  Google Scholar 

  • De Felice FG, Vieira MN, Saraiva LM, Figueroa-Villar JD, Garcia-Abreu J, Liu R, Chang L, Klein WL, Ferreira ST (2004) Targeting the neurotoxic species in Alzheimer’s disease: inhibitors of Abeta oligomerization. FASEB J 18:1366–1372

    Article  PubMed  CAS  Google Scholar 

  • De Felice FG, Wasilewska-Sampaio AP, Barbosa AC, Gomes FC, Klein WL, Ferreira ST (2007a) Cyclic AMP enhancers and abeta oligomerization blockers as potential therapeutic agents in Alzheimer’s disease. Curr Alzheimer Res 4:263–271

    Article  PubMed  Google Scholar 

  • De Felice FG, Velasco PT, Lambert MP, Viola K, Fernandez SJ, Ferreira ST, Klein WL (2007b) Abeta oligomers induce neuronal oxidative stress through an N-methyl-d-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine. J Biol Chem 282:11590–11601

    Article  PubMed  CAS  Google Scholar 

  • de Souza Leite M, Thomaz R, Fonseca FV, Panizzutti R, Vercesi AE, Meyer-Fernandes JR (2007) Trypanosoma brucei brucei: biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Exp Parasitol 115(4):315–323

    Article  PubMed  CAS  Google Scholar 

  • Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA (2003) DAVID: database for annotation, visualization, and integrated discovery. Genome Biol 4(5):P3

    Article  PubMed  Google Scholar 

  • Dugan LL, Sensi SL, Canzoniero LM, Handran SD, Rothman SM, Lin TS, Goldberg MP, Choi DW (1995) Mitochondrial production of reactive oxygen species in cortical neurons following exposure to N-methyl-d-aspartate. J Neurosci 15(10):6377–6388

    PubMed  CAS  Google Scholar 

  • Flajolet M, Rakhilin S, Wang H, Starkova N, Nuangchamnong N, Nairn AC, Greengard P (2003) Protein phosphatase 2C binds selectively to and dephosphorylates metabotropic glutamate receptor 3. Proc Natl Acad Sci USA 100(26):16006–16011

    Article  PubMed  CAS  Google Scholar 

  • Han YH, Kim SW, Kim SH, Kim SZ, Park WH (2008) 2,4-Dinitrophenol induces G1 phase arrest and apoptosis in human pulmonary adenocarcinoma Calu-6 cells. Toxicol In Vitro 22:659–670

    Article  PubMed  CAS  Google Scholar 

  • Hanstein WG (1976) Uncoupling of oxidative phosphorylation. Biochim Biophys Acta 456:129–148

    PubMed  CAS  Google Scholar 

  • Hernandez A, Kimball B, Romanchuk G, Mulholland MW (1995) Pituitary adenylate cyclase-activating peptide stimulates neurite growth in PC12 cells. Peptides 16:927–932

    Article  PubMed  CAS  Google Scholar 

  • Jay TM (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69:375–390

    Article  PubMed  CAS  Google Scholar 

  • Ji Y, Pang PT, Feng L, Lu B (2005) Cyclic AMP controls BDNF-induced TrkB phosphorylation and dendritic spine formation in mature hippocampal neurons. Nat Neurosci 8:164–172

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, McEwen ML, Nottingham SA, Maragos WF, Dragicevic NB, Sullivan PG, Springer JE (2004) The mitochondrial uncoupling agent 2,4-dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord. J Neurotrauma 21:1396–1404

    Article  PubMed  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses. Science 294:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36:D480–D484

    Article  PubMed  CAS  Google Scholar 

  • Korde AS, Sullivan PG, Maragos WF (2005a) The uncoupling agent 2,4-dinitrophenol improves mitochondrial homeostasis following striatal quinolinic acid injections. J Neurotrauma 22:1142–1149

    Article  PubMed  Google Scholar 

  • Korde AS, Pettigrew LC, Craddock SD, Maragos WF (2005b) The mitochondrial uncoupler 2,4-dinitrophenol attenuates tissue damage and improves mitochondrial homeostasis following transient focal cerebral ischemia. J Neurochem 94:1676–1684

    Article  PubMed  CAS  Google Scholar 

  • Kudin A, Vielhaber S, Beck H, Elger CE, Kunz WS (1999) Quantitative investigation of mitochondrial function in single rat hippocampal slices: a novel application of high-resolution respirometry and laser-excited fluorescence spectroscopy. Brain Res Protoc 4:329–334

    Article  CAS  Google Scholar 

  • Li D, Wang F, Lai M, Chen Y, Zhang JF (2005) A protein phosphatase 2calpha-Ca2+ channel complex for dephosphorylation of neuronal Ca2+ channels phosphorylated by protein kinase C. J Neurosci 25(8):1914–1923

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  PubMed  CAS  Google Scholar 

  • Luna-Moreno D, Vázquez-Martínez O, Báez-Ruiz A, Ramírez J, Díaz-Muñoz M (2007) Food restricted schedules promote differential lipoperoxidative activity in rat hepatic subcellular fractions. Comp Biochem Physiol A 146:632–643

    Article  CAS  Google Scholar 

  • Maragos WF, Rockich KT, Dean JJ, Young KL (2003) Pre- or post treatment with the mitochondrial uncoupler 2,4-dinitrophenol attenuates striatal quinolinate lesions. Brain Res 966:312–316

    Article  PubMed  CAS  Google Scholar 

  • Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T (2003) Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 9:1062–1068

    Article  PubMed  CAS  Google Scholar 

  • Mattson M (2003) Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromol Med 3:65–94

    Article  CAS  Google Scholar 

  • Pandya JD, Pauly JR, Nukala VN, Sebastian AH, Day KM, Korde AS, Maragos WF, Hall ED, Sullivan PG (2007) Post-injury administration of mitochondrial uncouplers increases tissue sparing and improves behavioral outcome following traumatic brain injury in rodents. J Neurotrauma 24(5):798–811

    Article  PubMed  Google Scholar 

  • Papa S, Skulachev VP (1997) Reactive oxygen species, mitochondria, apoptosis and aging. Mol Cell Biochem 174:305–319

    Article  PubMed  CAS  Google Scholar 

  • Parascandola J (1974) Dinitrophenol and bioenergetics: an historical perspective. Mol Cell Biochem 5:69–77

    Article  PubMed  CAS  Google Scholar 

  • Paula Lima AC, Arriagada C, Toro R, Cárdenas AM, Caviedes R, Ferreira ST, Caviedes P (2008) Small-molecule aggregation inhibitors reduce excess amyloid in a trisomy 16 mouse cortical cell line. Biol Res 41(2):129–136

    PubMed  Google Scholar 

  • Paula-Lima AC, De Felice FG, Brito-Moreira J, Ferreira ST (2005) Activation of GABA(A) receptors by taurine and muscimol blocks the neurotoxicity of beta-amyloid in rat hippocampal and cortical neurons. Neuropharmacology 49:1140–1148

    Article  PubMed  CAS  Google Scholar 

  • Paula-Lima AC, Tricerri MA, Brito-Moreira J, Bomfim TR, Oliveira FF, Magdesian MH, Grinberg LT, Panizzutti R, Ferreira ST (2009) Human apolipoprotein A-I binds amyloid-beta and prevents Abeta-induced neurotoxicity. Int J Biochem Cell Biol 41:1361–1370

    Article  PubMed  CAS  Google Scholar 

  • Pimenta AF, Zhukareva V, Barbe MF, Reinoso BS, Grimley C, Henzel W, Fischer I, Levitt P (1995) The limbic system-associated membrane protein is an Ig superfamily member that mediates selective neuronal growth and axon targeting. Neuron 15:287–297

    Article  PubMed  CAS  Google Scholar 

  • Raghu P, Reddy GB, Sivakumar B (2002) Inhibition of transthyretin amyloid fibril formation by 2,4-dinitrophenol through tetramer stabilization. Arch Biochem Biophys 400:43–47

    Article  PubMed  CAS  Google Scholar 

  • Sanchez S, Jimenez C, Carrera AC, Diaz-Nido J, Avila J, Wandosell F (2004) A cAMP-activated pathway, including PKA and PI3K, regulates neuronal differentiation. Neurochem Int 44:231–242

    Article  PubMed  CAS  Google Scholar 

  • Shen L, Nam HS, Song P, Moore H, Anderson SA (2006) FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits. Hippocampus 16:875–890

    Article  PubMed  CAS  Google Scholar 

  • Shoichet SA, Kunde SA, Viertel P, Schell-Apacik C, von Voss H, Tommerup N, Ropers HH, Kalscheuer VM (2005) Haploinsufficiency of novel FOXG1B variants in a patient with severe mental retardation, brain malformations and microcephaly. Hum Genet 117:536–544

    Article  PubMed  Google Scholar 

  • Sullivan PG, Rabchevsky AG, Waldmeier PC, Springer JE (2005) Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res 79(1-2):231–239

    Article  PubMed  CAS  Google Scholar 

  • Takahashi M, Sunaga M, Hirata-Koizumi M, Hirose A, Kamata E, Ema M (2008) Reproductive and developmental toxicity screening study of 2,4-dinitrophenol in rats. Environ Toxicol 24:74–81

    Article  CAS  Google Scholar 

  • Teng FY, Tang BL (2006) Axonal regeneration in adult CNS neurons—signaling molecules and pathways. J Neurochem 96:1501–1508

    Article  PubMed  CAS  Google Scholar 

  • Vieira MNN, Figueroa-Villar JD, Meirelles MNL, Ferreira ST, De Felice FG (2006) Small molecule inhibitors of lysozyme amyloid aggregation. Cell Biochem Biophys 44:549–553

    Article  PubMed  CAS  Google Scholar 

  • Vieira MN, Forny-Germano L, Saraiva LM, Sebollela A, Martinez AM, Houzel JC, De Felice FG, Ferreira ST (2007) Soluble oligomers from a non-disease related protein mimic Abeta-induced tau hyperphosphorylation and neurodegeneration. J Neurochem 103(2):736–748

    Article  PubMed  CAS  Google Scholar 

  • Wasilewska-Sampaio AP, Silveira MS, Holub O, Goecking R, Gomes FC, Neto VM, Linden R, Ferreira ST, De Felice FG (2005) Neuritogenesis and neuronal differentiation promoted by 2,4-dinitrophenol, a novel anti-amyloidogenic compound. FASEB J 19:1627–1636

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article was supported by grants from Howard Hughes Medical Institute, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ/Brazil) and Instituto Nacional de Neurociência Translacional (INNT/Brazil) (to STF). We thank Lorena Chávez González, Simón Guzmán León, José Luis Santillán Torres and Jorge Ramírez for expert assistance with microarray analysis, and Gerardo Coello, Gustavo Corral and Ana Patricia Gómez for genArise software assistance. CTM and EDN acknowledge the support of Associação Beneficente Alzira Denise Hertzog Silva (ABADHS) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio T. Ferreira.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Figure I

Representative DCF fluorescence images for detection of ROS levels (TIFF 79 kb)

Supplemental Table I

Genes up-regulated by DNP treatment (DOC 330 kb)

Supplemental Table II

Genes down-regulated by DNP treatment (DOC 298 kb)

Supplemental Table III

Kegg pathways with low representation in the up-regulated dataset (DOC 81 kb)

Supplemental Table IV

Kegg pathways with low representation in the down-regulated dataset (DOC 33 kb)

Supplemental Table V

Sequences of oligonucleotide primers used for real-time PCR (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebollela, A., Freitas-Corrêa, L., Oliveira, F.F. et al. Expression Profile of Rat Hippocampal Neurons Treated with the Neuroprotective Compound 2,4-Dinitrophenol: Up-Regulation of cAMP Signaling Genes. Neurotox Res 18, 112–123 (2010). https://doi.org/10.1007/s12640-009-9133-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-009-9133-y

Keywords

Navigation