Skip to main content
Log in

Increased Antiseizure Effectiveness with Tiagabine Combined with Sodium Channel Antagonists in Mice Exposed to Hyperbaric Oxygen

  • Original Article
  • Published:
Neurotoxicity Research Aims and scope Submit manuscript

Abstract

Hyperbaric oxygen (HBO2) is acutely toxic to the central nervous system, culminating in EEG spikes and tonic-clonic convulsions. GABA enhancers and sodium channel antagonists improve seizure latencies in HBO2 when administered individually, while combining antiepileptic drugs from different functional classes can provide greater seizure latency. We examined the combined effectiveness of GABA enhancers (tiagabine and gabapentin) with sodium channel antagonists (carbamazepine and lamotrigine) in delaying HBO2-induced seizures. A series of experiments in C57BL/6 mice exposed to 100% oxygen at 5 atmospheres absolute (ATA) were performed. We predicted equally effective doses from individual drug-dose response curves, and the combinations of tiagabine + carbamazepine or lamotrigine were tested to determine the maximally effective combined doses to be used in subsequent experiments designed to identify the type of pharmacodynamic interaction for three fixed-ratio combinations (1:3, 1:1, and 3:1) using isobolographic analysis. For both combinations, the maximally effective combined doses increased seizure latency over controls > 5-fold and were determined to interact synergistically for fixed ratios 1:1 and 3:1, additive for 1:3. These results led us to explore whether the benefits of these drug combinations could be extended to the lungs, since a centrally mediated mechanism is believed to mediate hyperoxic-induced cardiogenic lung injury. Indeed, both combinations attenuated bronchoalveolar lavage protein content by ~ 50%. Combining tiagabine with carbamazepine or lamotrigine not only affords greater antiseizure protection in HBO2 but also allows for lower doses to be used, minimizing side effects, and attenuating acute lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HBO2 :

Hyperbaric oxygen

ATA:

Atmospheres absolute

AEDs:

Antiepileptic drugs

CBZ:

Carbamazepine

LTG:

Lamotrigine

TGB:

Tiagabine

GBP:

Gabapentin

References

  • Berenbaum MC (1977) Synergy, additivism and antagonism in immunosuppression. A critical review. Clin Exp Immunol 28:1–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bert P (1943) Barometric pressure: researches in experimental physiology. Translated from the French by Hitchcock MA, Hitchcock FA. College Book Company, Columbus

  • Borowicz KK, Czuczwar SJ (2005) Influence of aminoglutethimide and spironolactone on the efficacy of carbamazepine and diphenylhydantoin against amygdala-kindled seizures in rats. Eur J Pharmacol 516:212–218

    CAS  PubMed  Google Scholar 

  • Borowicz KK, Swiader M, Luszczki J, Czuczwar SJ (2002) Effect of gabapentin on the anticonvulsant activity of antiepileptic drugs against electroconvulsions in mice: an isobolographic analysis. Epilepsia 43:956–963

    CAS  PubMed  Google Scholar 

  • Cheung H, Kamp D, Harris E (1992) An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res 13:107–112

    CAS  PubMed  Google Scholar 

  • Cohn R, Gersh I (1945) Changes in brain potentials during convulsions induced by oxygen under pressure. J Neurophysiol 8(3):155–160

    CAS  Google Scholar 

  • Coulter DA (1997) Antiepileptic drug cellular mechanisms of action: where does lamotrigine fit in. J Child Neurol 12:S2–S9

    PubMed  Google Scholar 

  • Czuczwar SJ, Borowicz KK (2002) Polytherapy in epilepsy: the experimental evidence. Epilepsy Res 52:15–23

    CAS  PubMed  Google Scholar 

  • Deckers CL, Czuczwar SJ, Hekster YA, Keyser A, Kubova H, Meinardi H, Patsalos PN, Renier WO, Van Rijn CM (2000) Selection of antiepileptic drug polytherapy based on mechanisms of action: the evidence reviewed. Epilepsia 41:1364–1374

    CAS  PubMed  Google Scholar 

  • Demchenko IT, Welty-Wolf KE, Allen BW, Piantadosi CA (2007) Similar but not the same: normobaric and hyperbaric pulmonary oxygen toxicity, the role of nitric oxide. Am J Phys Lung Cell Mol Physiol 293:L229–L238

    CAS  Google Scholar 

  • Demchenko IT, Zhilyaev SY, Moskvin AN, Piantadosi CA, Allen BW (2011) Autonomic activation links CNS oxygen toxicity to acute cardiogenic pulmonary injury. Am J Physiol Lung Cell Mol Physiol 300:L102–L111

    CAS  PubMed  Google Scholar 

  • Demchenko IT, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW (2012) Nitric oxide-mediated central sympathetic excitation promotes CNS and pulmonary O2 toxicity. J Appl Physiol 112:1814–1823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Demchenko IT, Gasier HG, Zhilyaev SY, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW (2014) Baroreceptor afferents modulate brain excitation and influence susceptibility to toxic effects of hyperbaric oxygen. J Appl Physiol 117:525–534

    CAS  PubMed  Google Scholar 

  • Demchenko IT, Zhilyaev SY, Moskvin AN, Krivchenko AI, Piantadosi CA, Allen BW (2017) Antiepileptic drugs prevent seizures in hyperbaric oxygen: a novel model of epileptiform activity. Brain Res 1657:347–354

    CAS  PubMed  Google Scholar 

  • Dunham NW, Miya TS (1957) A note on a simple apparatus for detecting neurological deficit in rats and mice. J Am Pharm Assoc Am Pharm Assoc 46:208–209

    CAS  PubMed  Google Scholar 

  • Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3:e00149

    PubMed  PubMed Central  Google Scholar 

  • Gasier HG, Demchenko IT, Tatro LG, Piantadosi CA (2017) S-nitrosylation of GAD65 is implicated in decreased GAD activity and oxygen-induced seizures. Neurosci Lett 653:283–287

    CAS  PubMed  Google Scholar 

  • Gasier HG, Demchenko IT, Zhilyaev SY, Moskvin AN, Krivchenko AI, Piantadosi CA (2018) Adrenoceptor blockade modifies regional cerebral blood flow responses to hyperbaric hyperoxia: protection against CNS oxygen toxicity. J Appl Physiol 125:1296–1304

    CAS  Google Scholar 

  • Goldenberg MM (2010) Overview of drugs used for epilepsy and seizures: etiology, diagnosis, and treatment. P T 35:392–415

    PubMed  PubMed Central  Google Scholar 

  • Hall AA, Young C, Bodo M, Mahon RT (2013) Vigabatrin prevents seizure in swine subjected to hyperbaric hyperoxia. J Appl Physiol (1985) 115:861–867

    CAS  Google Scholar 

  • Harel D, Kerem J, Lavy S (1969) The influence of high oxygen pressure on the electrical activity of the brain. Electroencephalogr Clin Neurophysiol 27:219

    CAS  PubMed  Google Scholar 

  • Jo S, Bean BP (2014) Sidedness of carbamazepine accessibility to voltage-gated sodium channels. Mol Pharmacol 85:381–387

    PubMed  PubMed Central  Google Scholar 

  • Lehar J, Zimmermann GR, Krueger AS, Molnar RA, Ledell JT, Heilbut AM, Short GF 3rd, Giusti LC, Nolan GP, Magid OA, Lee MS, Borisy AA, Stockwell BR, Keith CT (2007) Chemical combination effects predict connectivity in biological systems. Mol Syst Biol 3:80

    PubMed  PubMed Central  Google Scholar 

  • Litchfield JT Jr, Wilcoxon F (1949) A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 96:99–113

    CAS  Google Scholar 

  • Luszczki J, Swiader M, Czuczwar M, Kis J, Czuczwar SJ (2003) Interactions of tiagabine with some antiepileptics in the maximal electroshock in mice. Pharmacol Biochem Behav 75:319–327

    CAS  PubMed  Google Scholar 

  • Matsumura N, Nakaki T (2014) Isobolographic analysis of the mechanisms of action of anticonvulsants from a combination effect. Eur J Pharmacol 741:237–246

    CAS  PubMed  Google Scholar 

  • Porreca F, Jiang Q, Tallarida RJ (1990) Modulation of morphine antinociception by peripheral [Leu5]enkephalin: a synergistic interaction. Eur J Pharmacol 179:463–468

    CAS  PubMed  Google Scholar 

  • Reshef A, Bitterman N, Kerem D (1991) The effect of carbamazepine and ethosuximide on hyperoxic seizures. Epilepsy Res 8:117–121

    CAS  PubMed  Google Scholar 

  • Rucci FS, Giretti ML, La Rocca M (1967) Changes in electrical activity of the cerebral cortex and of some subcortical centers in hyperbaric oxygen. Electroencephalogr Clin Neurophysiol 22:231–238

    CAS  PubMed  Google Scholar 

  • Seckin M, Gurgor N, Beckmann YY, Ulukok MD, Suzen A, Basoglu M (2011) Focal status epilepticus induced by hyperbaric oxygen therapy. Neurologist 17:31–33

    PubMed  Google Scholar 

  • Sonnenschein RR, Stein SN (1953) Electrical activity of the brain in acute oxygen poisoning. Electroencephalogr Clin Neurophysiol 5:521–524

    CAS  PubMed  Google Scholar 

  • Stefani A, Spadoni F, Bernardi G (1997) Votage-activated calcium channels: targets of antiepileptic drug therapy. Epilepsia 38:959–965

    CAS  PubMed  Google Scholar 

  • Stein SN, Sonnenschein RR (1950) Electrical activity and oxygen tension of brain during hyperoxie convulsions. J Aviat Med 21:401–405

    CAS  PubMed  Google Scholar 

  • Suzdak PD, Jansen JA (1995) A review of the preclinical pharmacology of tiagabine: a potent and selective anticonvulsant GABA uptake inhibitor. Epilepsia 36:612–626

    CAS  PubMed  Google Scholar 

  • Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298:865–872

    CAS  PubMed  Google Scholar 

  • Tallarida RJ (2012) Revisiting the isobole and related quantitative methods for assessing drug synergism. J Pharmacol Exp Ther 342:2–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzuk-Shina T, Bitterman N, Harel D (1991) The effect of vigabatrin on central nervous system oxygen toxicity in rats. Eur J Pharmacol 202:171–175

    CAS  PubMed  Google Scholar 

  • Voronov IB (1964) Brain structures and origin of convulsions caused by high oxygen pressure (Hop). Int J Neuropharmacol 3:279–282

    CAS  PubMed  Google Scholar 

  • Weaver LK (1983) Phenytoin sodium in oxygen-toxicity-induced seizures. Ann Emerg Med 12:38–41

    CAS  PubMed  Google Scholar 

  • Wood JD, Watson WJ (1963) Gamma-aminobutyric acid levels in the brain of rats exposed to oxygen at high pressures. Can J Biochem Physiol 41:1907–1913

    CAS  PubMed  Google Scholar 

  • Wood JD, Stacey NE, Watson WJ (1965) Pulmonary and central nervous system damage in rats exposed to hyperbaric oxygen and protection therefrom by gamma-aminobutyric acid. Can J Physiol Pharmacol 43:405–410

    CAS  PubMed  Google Scholar 

  • Wood JD, Watson WJ, Ducker AJ (1967) Oxygen poisoning in various mammalian species and the possible role of gamma-aminobutyric acid metabolism. J Neurochem 14:1067–1074

    CAS  PubMed  Google Scholar 

  • Wood JD, Watson WJ, Murray GW (1969) Correlation between decreases in brain gamma-aminobutyric acid levels and susceptibility to convulsions induced by hyperbaric oxygen. J Neurochem 16:281–287

    CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Office of Naval Research Grant N00014-15-1-2072 (to C. A. Piantadosi) and the Russian Academy of Sciences, Program 18, Project 0132-2018-0011 (to I. T. Demchenko).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heath G. Gasier.

Ethics declarations

All animal procedures were approved independently by the Institutional Animal Care and Use Committee of Duke University and the Ethical Review Board of the Institute of Evolutionary Physiology and Biochemistry

Conflict of Interest

The authors declare that they have no conflict of interest.

Disclaimer

The views expressed are those of H.G. Gasier and do not reflect the official position of the Uniformed Services University of the Health Sciences, United States Navy, or Department of Defense.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demchenko, I.T., Zhilyaev, S.Y., Alekseeva, O.S. et al. Increased Antiseizure Effectiveness with Tiagabine Combined with Sodium Channel Antagonists in Mice Exposed to Hyperbaric Oxygen. Neurotox Res 36, 788–795 (2019). https://doi.org/10.1007/s12640-019-00063-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12640-019-00063-5

Keywords

Navigation