Skip to main content
Log in

Confinement of an exciton in a quantum dot: effect of modified Kratzer potential

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In the present work, we have considered an exciton confined in a quantum dot with modified Kratzer potential. We have studied the electronic and optical properties of the system by using the numerical diagonalization of the Hamiltonian matrix. For this purpose, we have calculated the binding energies of the ground and first excited states as functions of the quantum dot size. We have also computed the linear, nonlinear and total absorption coefficients between ground and first excited states. It is found that the quantum dot radius has an important role on the binding energy and absorption coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K J Moore, G Duggan, K Woodbridge and C Roberts Phys. Rev. B 41 1090 (1990)

    Article  ADS  Google Scholar 

  2. K J Moore, G Duggan, K Woodbridge and C Roberts Phys. Rev. B 41 1095 (1990)

    Article  ADS  Google Scholar 

  3. M M Dignam and J E Sipe Phys. Rev. B 41 2865 (1990)

    Article  ADS  Google Scholar 

  4. P Bigenwald, B Gil, A Kavokin and P Christol Phys. Stat. Sol. A 183 125 (2001)

    Article  ADS  Google Scholar 

  5. G Mandal and T Ganguly Indian J. Phys. 85 1229 (2011)

    Article  ADS  Google Scholar 

  6. R Khordad Indian J. Phys. 86 653 (2012)

    Article  ADS  Google Scholar 

  7. S Sarmah and A Kumar Indian J. Phys. 85 713 (2011)

    Article  ADS  Google Scholar 

  8. S Tekerek, A Kudret and Ü Alver Indian J. Phys. 85 1469 (2011)

    Article  ADS  Google Scholar 

  9. S Karan, D Dutta Majumder and A Goswami Indian J. Phys. 86 667 (2012)

    Article  ADS  Google Scholar 

  10. S Mitra et al. Indian J. Phys. 85 649 (2011)

    Article  ADS  Google Scholar 

  11. M R Vaezi, S K Shendy and T Ebadzadeh Indian J. Phys. 86 9 (2012)

    Article  ADS  Google Scholar 

  12. R Khordad Eur. Phys. J. B 78 399 (2010)

    Article  ADS  Google Scholar 

  13. R Khordad, G Rezaei, B Vaseghi, F Taghizade and H A Kenari Opt. Quant. Electron 42 587 (2012)

    Article  Google Scholar 

  14. W Xie and S Liang Physica B 406 4657 (2011)

    Article  ADS  Google Scholar 

  15. W-P Li, Z-W Wang, J-W Yin, Y-F Yu and J-L Xiao Physica B 403 3709 (2008)

  16. L Esaki, R Tsu, L L Chang and G A Sai-Halasz Phys. Rev. Lett. 34 1509 (1975)

    Article  ADS  Google Scholar 

  17. S W Lee, K Hirakawa and Y Shimada Appl. Phys. Lett. 75 1428 (1999)

    Article  ADS  Google Scholar 

  18. S S Li and J B Xia Phys. Rev. B 55 15434 (1997)

    Article  ADS  Google Scholar 

  19. R Buczko and F Bassani Phys. Rev. B 54 2667 (1996)

    Article  ADS  Google Scholar 

  20. V Bondarenko and Y Zhao J. Phys. Condens. Matter 15 1377 (2003)

    Article  ADS  Google Scholar 

  21. S Yilmaz and H Safak Physica E 36 40 (2007)

    Article  ADS  Google Scholar 

  22. S Sauvage and P Boucand Phys. Rev. B 59 9830 (1999)

    Article  ADS  Google Scholar 

  23. G Bastard Phys. Rev. B 24 4714 (1981)

    Article  ADS  Google Scholar 

  24. E Kasapoglu, H Sari and I Sokmen Physica E 19 332 (2003)

    Article  ADS  Google Scholar 

  25. J Lee and H N Spector J. Vac. Sci. Technol. B 2 16 (1984)

    Article  Google Scholar 

  26. M Bouhassoune, R Charrour, M Fliyou, D Bria and A Nougaoui Physica B 304 389 (2001)

    Article  ADS  Google Scholar 

  27. G W Bryant Phys. Rev. B 29 6632 (1984)

    Article  ADS  Google Scholar 

  28. E P Pokatilov, V M Fomin, S N Balaban, S N Klimin and J T Devreese Phys. Status Solidi B 210 879 (1998)

    Article  ADS  Google Scholar 

  29. H J Xie, C Y Chen and B K Ma Phys. Rev. B 61 4827 (2000)

    Article  ADS  Google Scholar 

  30. A Gharaati and R Khordad Indian J. Phys. 85 433 (2011)

    Article  ADS  Google Scholar 

  31. N Porras-Montenegro and S T Perez-Merchancano Phys. Rev. B 46 9780 (1992)

    Article  ADS  Google Scholar 

  32. J L Zhu Phys. Rev. B 39 8780 (1989)

    Article  ADS  Google Scholar 

  33. J L Zhu, J J Xiong and B L Gu Phys. Rev. B 41 6001 (1990)

    Article  ADS  Google Scholar 

  34. E Hanamura Phys. Rev. B 38 1228 (1988)

    Article  ADS  Google Scholar 

  35. R Chen, D L Lin and B Mendoza Phys. Rev. B 48 11879 (1993)

    Article  ADS  Google Scholar 

  36. G Wang and K Guo Physica B 315 234 (2002)

    Article  ADS  Google Scholar 

  37. H F Hess, E Betzig, T D Harris, L N Pfeiffer and K W West Science 264 1740 (1994)

    Article  ADS  Google Scholar 

  38. K Brunner, G Abstreiter, G Böhm, G Tränkle and G Weimann Phys. Rev. Lett. 73 1138 (1994)

    Article  ADS  Google Scholar 

  39. D Gammon, E S Snow, B V Shanabrook, D S Katzer and D Park Science 273 87 (1996)

    Article  ADS  Google Scholar 

  40. J R Haynes Phys. Rev. Lett. 4 361 (1960)

    Article  ADS  Google Scholar 

  41. C C Yang, L C Liu and S H Chang Phys. Rev. B 58 1954 (1998)

    Article  ADS  Google Scholar 

  42. K L Janssens, F M Peeters and V A Schweigert Phys. Rev. B 63 205311 (2001)

    Article  ADS  Google Scholar 

  43. M Brasken, M Lindberg, D Sundholm and J Olsen Phys. Rev. B 61 7652 (2000)

    Article  ADS  Google Scholar 

  44. A Kratzer Z. Phys. 3 289 (1920)

    Article  ADS  Google Scholar 

  45. E Fues Ann. Phys. 80 367 (1926)

    Article  MATH  Google Scholar 

  46. K J Oyewumi Int. J. Theor. Phys. 49 1302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  47. S H Dong and R Lemus Int. J. Quantum Chem. 86 265 (2002)

    Article  Google Scholar 

  48. S H Patil and K D Sen Phys. Lett. A 362 109 (2007)

    Article  ADS  Google Scholar 

  49. S M Ikhdair and R Sever J. Mol. Structure 806 155 (2007)

    Article  Google Scholar 

  50. M Aygun, O Bayrak, I Boztosun and Y Sahin Eur. Phys. J. D 66 35 (2012)

    Article  ADS  Google Scholar 

  51. P G Hajigeorgiou J. Mol. Spectrosc. 235 111 (2006)

    Article  ADS  Google Scholar 

  52. A Durmus and F Yasuk J. Chem. Phys. 126 074108 (2007)

    Article  ADS  Google Scholar 

  53. W Xie Physica B 315 240 (2002)

    Article  ADS  Google Scholar 

  54. W Xie Superlatt. Microstruct. 46 693 (2009)

    Article  ADS  Google Scholar 

  55. W Xie and R Wenying Commun. Theor. Phys. 29 531 (1998)

    Google Scholar 

  56. R Khordad Indian J. Phys. 86 513 (2012)

    Article  ADS  Google Scholar 

  57. R Khordad, S Tafaroji, R Katebi and A Ghanbari Commun. Theor. Phys. 57 1076 (2012)

    Article  ADS  MATH  Google Scholar 

  58. L Liu, J Li and G Xiong Physica E 25 466 (2005)

    Article  ADS  Google Scholar 

  59. M Sahin Phys. Rev. B 77 045317 (2008)

    Article  ADS  Google Scholar 

  60. R L Greene, K K Bajaj and D E Phelps Phys. Rev. B 29 1807 (1984)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khordad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khordad, R. Confinement of an exciton in a quantum dot: effect of modified Kratzer potential. Indian J Phys 87, 623–628 (2013). https://doi.org/10.1007/s12648-013-0281-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-013-0281-9

Keywords

PACS Nos.

Navigation