Skip to main content

Advertisement

Log in

Characterization of metal-free D-(π-A)2 organic dye and its application as cosensitizer along with N719 dye for efficient dye-sensitized solar cells

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The optical, electrochemical and density functional theory molecular simulation of a metal-free D-(π-A)2, i.e., 3,3′-(5,5′-(9-hexyl-9H-carbazole-3,6-diyl)bis(thiophene-5,2-diyl))bis(2-cyanoacrylic acid) denoted as D has been investigated. A stepwise cosensitization of D with N719 dye is adopted to enhance the power conversion efficiency of dye-sensitized solar cells. The metal-free dye possesses strong absorption in the 370–450 nm wavelength range and effectively overcomes the competitive light absorption by I 3 /I . The N719/D cosensitized dye-sensitized solar cell shows a power conversion efficiency of about 7.24 %, which is higher than the dye-sensitized solar cells based on either N719 (5.78 %) or D (3.95 %) sensitizers. The improved power conversion efficiency of the cosensitized dye-sensitized solar cell is attributed to the combined enhancement of both short-circuit photocurrent and open-circuit voltage. The short-circuit photocurrent improvement is attributed to the increase in the both light-harvesting efficiency of the cosensitized photoanode and charge collection efficiency of the dye-sensitized solar cell. However, the open-circuit voltage is improved due to better adsorption and surface coverage of TiO2 on cosensitization and an associated reduction in the back electron recombination with increased electron lifetime. These effects are analyzed using electrochemical impedance spectroscopy and dark current–voltage measurements of the dye-sensitized solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M Gratzel Acc. Chem. Res. 42 1788 (2009)

    Article  Google Scholar 

  2. A Hagfeldt, G Boschloo, L Sun, L Kloo and H Pettersson Chem. Rev. 110 6595 (2010)

    Article  Google Scholar 

  3. M V Marınez-Dıaz, G de la Torre and T Torres Chem. Commun. 46 7090 (2010)

    Article  Google Scholar 

  4. B O’Regan and M. Gratzel Nature 353 737 (1991)

    Article  ADS  Google Scholar 

  5. A Yella et al. Science 334 629 (2011)

    Article  ADS  Google Scholar 

  6. W Zeng et al. Chem. Mater. 22 1915 (2010)

    Article  Google Scholar 

  7. A Mishra, M K R Fischer and P Bauerle Angew. Chem. Int. Ed. 48 2474 (2009)

    Article  Google Scholar 

  8. A Hagfeldt, G Boschloo, L Sun, L Kloo and H Pettersson Chem. Rev. 110 6595 (2010)

    Article  Google Scholar 

  9. Y S Yen, H H Chou, Y C Chen, C Y Hsu and J T Lin J. Mater. Chem. 22 8734 (2012)

    Article  Google Scholar 

  10. A Abbotto et al. Dalton Trans. 40 234 (2011)

    Article  Google Scholar 

  11. S Paek et al. Chem. Commun. 47 2874 (2011)

    Article  Google Scholar 

  12. Y Liu et al. Chem. Commun. 47 4010 (2011)

    Article  Google Scholar 

  13. T Maeda, Y Hamamura, K Miyanaga, N Shima, S Yagi and H Nakazumi Org. Lett. 13 5994 (2011)

    Article  Google Scholar 

  14. S Gomez Esteban, P de la Cruz, A Aljarilla, L M Arellano and F Langa Org. Lett. 13 5362 (2011)

    Article  Google Scholar 

  15. A Braga, S Gimenez, I Concina, A Vomiero and I N Mora-Sero J. Phys. Chem. Lett. 2 454 (2011)

    Article  Google Scholar 

  16. C Jiao, N Zu, K-W Huang, P Wang and J Wu Org. Lett. 13 3652 (2011)

    Article  Google Scholar 

  17. K M Lee et al. J. Power Sources 196 2416 (2011)

    Article  Google Scholar 

  18. J Waman, F Buschest, Y Pellegtin, E Blart and F Odobel Org. Lett. 13 3944 (2011)

    Article  Google Scholar 

  19. R Y Ogura, S Nakane, M Morooka, M Orihashi, Y Suzuki and K Noda Appl. Phys. Lett. 94 073308 (2009)

    Google Scholar 

  20. C M Lan et al. Energy Environ. Sci. 5 6460 (2012)

    Article  Google Scholar 

  21. L Han et al. Energy Environ. Sci. 5 6057 (2012)

    Article  Google Scholar 

  22. H Ozawa, R Shimizu and H Arakawa RSC Adv. 2 3198 (2012)

    Article  Google Scholar 

  23. J H Yum, E Baranoff, S Wenger, M K Nazeeruddin and M Gratzel Energy Environ. Sci. 4 842 (2011)

    Article  Google Scholar 

  24. S Mathew et al. Nature Chemistry 6 242 (2014)

    Article  MathSciNet  Google Scholar 

  25. J J Cid et al. Angew. Chem. Int. Ed. 46 8358 (2007)

    Article  Google Scholar 

  26. B-W Park et al. Appl. Phys. Express 4 012301 (2011)

    Article  ADS  Google Scholar 

  27. T Ono, T Yamaguchi and H Arakawa Sol. Energy Mater. Sol. Cells 93 831 (2009)

    Article  Google Scholar 

  28. D Kuang et al. Langmuir 23 10906 (2007)

    Article  Google Scholar 

  29. S-Q Fan et al. J. Phys. Chem. C 115 7747 (2011)

    Article  ADS  Google Scholar 

  30. C-M Lan et al. Energy Environ. Sci. 5 6460 (2012)

    Article  Google Scholar 

  31. K-M Lee et al. J. Power Sources 196 2416 (2011)

    Article  Google Scholar 

  32. L H Nguyen et al. Phys. Chem. Chem. Phys. 14 16182 (2012)

    Article  Google Scholar 

  33. K S V Gupta et al. Organic Electronics 15 266 (2014)

    Article  Google Scholar 

  34. S Roquet et al. J. Am. Chem. Soc. 28 3459 (2006)

    Article  Google Scholar 

  35. Q Wang, J E Moser and M Gratzel J. Phys. Chem. B 109 14945 (2005)

    Article  Google Scholar 

  36. A Burke, S Ito, H Snaith, U Bach, K Kwiatkowski and M Gratzel Nano Lett. 8 977 (2008)

    Article  ADS  Google Scholar 

  37. Z J Ning et al. J. Phys. Chem. C 113 10307 (2009)

    Article  Google Scholar 

  38. C Klein, M K Nazeeruddin, D D Censo, P Liska and M Gratzel Inorg. Chem. 43 4216 (2004)

    Google Scholar 

  39. S Hwang et al. Chem. Commun. 2007 4887 (2007)

  40. W Wu et al. J. Mater. Chem. 20 1772 (2010)

    Article  Google Scholar 

  41. S Ito et al. Adv. Mater. 18 1202 (2006)

    Article  Google Scholar 

  42. M J Frisch et al. Gaussian 03 version C01 (Wallingford CT: Gaussian, Inc) (2004)

    Google Scholar 

  43. TURBOMOLE (version 5.6) Universitat Karlsruhe (2000)

  44. Z S Wang et al. J. Phys. Chem. B 109 3907 (2005)

    Article  Google Scholar 

  45. M Wang et al. Nano Today 5 169 (2010)

    Article  Google Scholar 

  46. Y Cao et al. J. Phys. Chem. C 113 6290 (2009)

    Article  Google Scholar 

  47. J Y Kim, Y H Kim and Y S Kim Curr. Appl. Phys. 11 S117 (2011)

    Article  ADS  Google Scholar 

  48. B J Song et al. Chem AEur. J. 17 11115 (2011)

    Article  Google Scholar 

  49. S H Kang et al. J. Mater. Chem. A 1 3977 (2013)

    Article  Google Scholar 

  50. H M Song et al. J. Mater. Chem. 22 3786 (2012)

    Article  Google Scholar 

  51. R Kern, R Sastrawan, J Ferber, R Stangl and J Luther Electrochim. Acta 47 4213 (2002)

    Article  Google Scholar 

  52. J Bisquert J. Phys. Chem. B 106 325 (2002)

    Article  Google Scholar 

  53. J Bisquert Phys. Chem. Chem. Phys. 5 5360 (2003)

    Article  Google Scholar 

  54. F Fabregat-Santiago, J Bisquert, G Garcia-Belmonte, G Boschloo and A Hagfeldt Sol. Energy Mater. Sol. Cells 87 117 (2005)

    Article  Google Scholar 

  55. Q Wang et al. J. Phys. Chem. B 110 25210 (2006)

    Article  Google Scholar 

  56. F Fabregat-Santiago et al. J. Am. Chem. Soc. 131 558 (2009)

    Article  Google Scholar 

  57. J Bisquert, F Fabregat-Santiago, I Mora-Sero, G Garcia-Belmonte and S J Gimenez J. Phys. Chem. C 113 17278 (2009)

    Article  Google Scholar 

  58. J Nissfolk, K Fredin, A Hagfeldt and G Boschloo J. Phys. Chem. B 110 17715 (2006)

    Article  Google Scholar 

  59. Z Zhang, S M Zakeeruddin, B O’Regan, R Humphry-Baker and M Gratzel J. Phys. Chem. B 109 21818 (2005)

    Article  Google Scholar 

  60. N Kopidakis, N R Neale and A J Frank J. Phys. Chem. B 110 12485 (2006)

    Article  Google Scholar 

  61. M A Green Solar Cells: Operating Principles, Technology and System Applications (Englewood Cliffs, NJ: Prentice-Hall) (1982)

Download references

Acknowledgments

Manjeet Singh is grateful to Maulana Azad National Institute of Technology (MANIT), Bhopal, India, for Institute Fellowship for supporting his doctoral studies. Authors are thankful to UK India Education and Research Initiative (UKIERI-II) project coordinated by the British Council, New Delhi, India, for financial support through a Thematic Partnership. Authors are also thankful to M. Chandrasekharam, Inorganic and Physical Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, India, for providing the metal-free dye D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kurchania.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M., Kurchania, R., Pockett, A. et al. Characterization of metal-free D-(π-A)2 organic dye and its application as cosensitizer along with N719 dye for efficient dye-sensitized solar cells. Indian J Phys 89, 1041–1050 (2015). https://doi.org/10.1007/s12648-015-0681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0681-0

Keywords

PACS No.

Navigation