Skip to main content
Log in

Electronic structure and optical properties of iron based chalcogenide FeX2 (X = S, Se, Te) for photovoltaic applications: a first principle study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In present work, the electronic structure and optical properties of the FeX2 (X = S, Se, Te) compounds have been evaluated by the density functional theory based on the scalar-relativistic full potential linear augmented plane wave method via Wien2K. From the total energy calculations, it has been found that all the compounds have direct band nature, which determined by iron 3d states at valance band edge and anion p dominated at conduction band at Γ-point and the fundamental band gap between the valence band and conduction band are estimated 1.40, 1.02 and 0.88 eV respectively with scissor correction for FeS2, FeSe2 and FeTe2 which are close to the experimental values. The optical properties such as dielectric tensor components and the absorption coefficient of these materials are determined in order to investigate their usefulness in photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Y Z Dong, Y F Zheng, H Duan, Y F Sun and Y H Chen Mater. Lett. 59 2398 (2005)

    Article  Google Scholar 

  2. N Hamdadou, A Khelil, M Morsli and J C Bernede Vacuum 77 151 (2005)

    Article  ADS  Google Scholar 

  3. A Ennaoui, S Fiechter, W Jaegermann and H Tributsch J. Electrochem. Soc. 133 97 (1986)

    Article  Google Scholar 

  4. K Buker, N Alonso-Vante and H Tributsch J. Appl. Phys. 72 5721 (1992)

    Article  ADS  Google Scholar 

  5. H J Kwon, S Thanikaikarasan, T Mahalingam, K H Park, C Sanjeeviraja and Y D Kim J. Mater. Sci. Mater. Electron. 19 1086 (2008)

    Article  Google Scholar 

  6. A Liu, X Chen, Z Zhang, Y Jiang and C Shi Solid State Commun. 138 538 (2006)

    Article  ADS  Google Scholar 

  7. Q Guanzhou, X Qi and H Yuehua Comput. Mater. Sci. 29 89 (2004)

    Article  Google Scholar 

  8. P Lazic, R Armiento, F W Herbert, R Chakraborty, R Sun, M K Y Chan, K Hartman, T Buonassisi, B Yildiz and G Ceder J. Phys. Condens. Matter 25 465801 (2013)

    Article  ADS  Google Scholar 

  9. A Kjekshus and T Rakke Acta Chem. Scand. A 29443 (1975)

    Article  Google Scholar 

  10. V Eyert, K-H Hock, S Fiechter and H Tributsch Phys. Rev. B 57 6350 (1998)

    Article  ADS  Google Scholar 

  11. V K Gudelli, V Kanchana, G Vaitheeswaran, M C Valsakumar and S D Mahanti RSC Adv. 4 9424 (2014)

    Article  Google Scholar 

  12. V K Gudelli, V Kanchana, S Appalakondaiah, G Vaitheeswaran and M C Valsakumar J. Phys. Chem. C 117 21120 (2013)

    Article  Google Scholar 

  13. P Blaha, K Schwarz, G K H Madsen, D Kvasnicka and J Luitz (Wien2k Karlheinz Schwarz, Techn. University, Wien, Austria) ISBN 3-501031-1-2 (2001)

  14. J P Perdew, K Burke and M Ernzerhof Phys. Rev. Lett. 77 3865 (1996)

    Article  ADS  Google Scholar 

  15. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. C M I Okoye J. Phys. Condens. Matter 15 5945 (2003)

    Article  ADS  Google Scholar 

  17. B Amin, I Ahmad, M Maqbool, S Goumri-Said and R Ahmad J. Appl. Phys. 109 023109 (2011)

    Article  ADS  Google Scholar 

  18. J Sun, H T Wang, J He and Y Tian Phys. Rev. B 71 125132 (2005)

    Article  ADS  Google Scholar 

  19. S Ozaki and S Adachi J. Appl. Phys. 75 7470 (1994)

    Article  ADS  Google Scholar 

  20. S Saha and T P Sinha Phys. Rev. B 62 8828 (2000)

    Article  ADS  Google Scholar 

  21. Y N Zhang, J Hu, M Law and R Q Wu Phys. Rev. B 85 085314 (2012)

    Article  ADS  Google Scholar 

  22. A Ennaoui, S Fiechter, C Pettenkofer, N Alonso-vante, K Buker, M Bronold and C Hoopfner Solar Energy Mater. Solar Cells 29 289 (1993)

    Article  Google Scholar 

  23. S C Hsiao, C M Hsu, S Y Chen, Y H Perng, Y L Chueh, L J Chen and L H Chou Mater. Lett. 75 152 (2012)

    Article  Google Scholar 

  24. T Chattopadhyay and H G vson Schnering J. Phys. Chem. Solids 46 113 (1985)

    Article  ADS  Google Scholar 

  25. B G Ganga, C Ganeshraj, A GopalKrishna and P N Santhosh. http://arxiv.org/abs/1303.1381 (2013)

  26. T A Bither, R J Bouchard, W H Cloud, P C Donohue and W J Siemons Inorg. Chem. 7 2208 (1968)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledges the Indian Institute of Technology (Indian School of Mines), Dhanbad, India, for the financial support and the Department of Science and Technology (DST) for project with Grant Number SR/FTP/PS-184/2012, SERB video y.No.SERB/F/5439/2013-14 dated 25.11.2013. A.G. likes to thank the Science & Engineering Research Board (SERB) for National Post-Doctoral Fellowship of reference no. PDF/2016/001650.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thangavel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Thangavel, R. Electronic structure and optical properties of iron based chalcogenide FeX2 (X = S, Se, Te) for photovoltaic applications: a first principle study. Indian J Phys 91, 1339–1344 (2017). https://doi.org/10.1007/s12648-017-1046-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1046-7

Keywords

PACS Nos.

Navigation