Skip to main content
Log in

Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In this paper, semi analytical approach is applied to investigate nanofluid Marangoni convection in presence of magnetic field. Koo–Kleinstreuer–Li model is taken into account to simulate nanofluid properties. Homotopy analysis method is utilized to solve the final ordinary equations which are obtained from similarity transformation. Roles of Hartmann number and nanofluid volume fraction are presented graphically. Results show that temperature augments with rise of nanofluid volume fraction. Impact of nanofluid volume fraction on normal velocity is more than tangential velocity. Temperature gradient enhances with rise of magnetic number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

\(B_{0}\) :

Magnetic induction

\(Ha\) :

Hartmann number

\(M\) :

Magnetic number

\(\Pr\) :

Prandtl number

\(T\) :

Fluid temperature

\(v,\,u\) :

Vertical and horizontal

\(\delta_{el}^{{}}\) :

Electrical conductivity

\(\eta\) :

Similarity independent variable

\(\phi\) :

Volume fraction of nanofluid

\(\sigma\) :

Surface tension

\(\alpha\) :

Thermal diffusivity

\(\mu\) :

Dynamic viscosity

\(s\,\,\,\) :

Solid particles

\(f\) :

Base fluid

\(nf\) :

Nanofluid

\(T\) :

Thermal quantity

\(\infty\) :

For \(\eta \to \infty\)

\(0\) :

At \(\eta \to 0\)

References

  1. E Magyari and A J Chamkha Int. J. Therm. Sci. 47 848 (2008)

    Article  Google Scholar 

  2. A Andreozzi, O Manca, S Nardini and D Ricci Appl.Therm. Eng. 98 1044 (2016)

    Article  Google Scholar 

  3. M Sheikholeslami and D D Ganji J. Taiwan Inst. Chem. Eng. 65 43 (2016)

    Article  Google Scholar 

  4. M A Sheremet, I Pop, N C Roşca J.Taiwan Inst. Chem. Eng. 61 211 (2016)

    Article  Google Scholar 

  5. A Malvandi, M H Kaffash, D D Ganji J. Taiwan Inst. Chem. Eng. 52 40 (2015)

    Article  Google Scholar 

  6. R Ahmad and M Mustafa J. Mol. Liq. 220 635 (2016)

    Article  Google Scholar 

  7. T Hayat, Z Nisar, H Yasmin, and A Alsaedi J. Mol. Liq. 220 448 (2016)

    Google Scholar 

  8. M M Bhatti and M M Rashidi J. Mol. Liq. 221 567 (2016)

    Article  Google Scholar 

  9. M Sheikholeslami and D D Ganji J. Mol. Liq. 233 499 (2017)

    Article  Google Scholar 

  10. F Selimefendigil and H F Öztop J. Mol. Liq. 216 67 (2016)

    Article  Google Scholar 

  11. M Sheikholeslami and D D Ganji Mater. Des. 120 382 (2017)

    Article  Google Scholar 

  12. M Sheikholeslami and Houman B Rokni J. Mol. Liq. 232 390 (2017)

  13. M A Sheremet, H F Oztop and I Pop J. Magn. Magn. Mater. 416 37 (2016)

    Article  ADS  Google Scholar 

  14. M S Kandelousi Eur. Phys. J. Plus 129 (2014) DOI: 10.1140/epjp/i2014-14248-2

  15. M Sheikholeslami and M M Bhatti Int. J. Heat Mass Transf 109 115 (2017)

    Article  Google Scholar 

  16. M Sheikholeslami and S A Shehzad Int. J. Heat Mass Transf. 109 82 (2017)

    Article  Google Scholar 

  17. M Sheikholeslami, K Vajravelu and M M Rashidi Int. J. Heat Mass Transf. 92 339 (2016)

    Article  Google Scholar 

  18. M Sheikholeslami Eur. Phys. J. Plus, (2017) 132: 55 DOI 10.1140/epjp/i2017-11330-3

  19. M Sheikholeslami and D D Ganji J. Mol. Liq. 229 566 (2017)

    Article  Google Scholar 

  20. M Sheikholeslami and D D Ganji Chem. Phys. Lett. 669 202 (2017)

    Article  ADS  Google Scholar 

  21. N S Akbar and Z H Khan J. Magn. Magn. Mater. 410 72 (2016)

    Article  ADS  Google Scholar 

  22. G Zhao, Y Jian and F Li J. Magn. Magn. Mater. 407 75 (2016)

    Article  ADS  Google Scholar 

  23. F M Abbasi and S A Shehzad, T. Hayat, B. Ahmad J. Magn. Magn. Mater. 404 159 (2016)

    Article  Google Scholar 

  24. M Sheikholeslami J. Mol. Liq. 229 137 (2017)

    Article  Google Scholar 

  25. M Sheikholeslami Phy. Lett. A 381 494 (2017)

    Article  ADS  Google Scholar 

  26. M Sheikholeslami J. Mol. Liq. 225 903 (2017)

    Article  Google Scholar 

  27. M Sheikholeslami and H B Rokni Int. J. Heat Mass Transf. 107 288 (2017).

  28. M Sheikholeslami Int. J. Hydrog. Energy, 42 821 (2017)

    Article  Google Scholar 

  29. M Sheikholeslami and D D Ganji J. Mol. Liq. 224 526 (2016)

    Article  Google Scholar 

  30. M Sheikholeslami, S Soleimani and D D Ganji J. Mol. Liq. 213 153 (2016)

    Article  Google Scholar 

  31. M Sheikholeslami and S Abelman IEEE Trans. Nanotechnol. 14 (3) 561 (2015)

    Article  ADS  Google Scholar 

  32. M Sheikholeslami and R Ellahi J. Z. Naturforsch. A, 70 (2) 115 (2015)

    Google Scholar 

  33. M Sheikholeslami and D D Ganji, Comput. Methods Appl. Mech. Eng. 283 651 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. M Sheikholeslami, D D Ganji, M Y Javed and R Ellahi J. Magn. Magn. Mater. 374 36 (2015)

    Article  ADS  Google Scholar 

  35. M Sheikholeslami and D D Ganji Energy 75 400 (2014).

    Article  Google Scholar 

  36. M Sheikholeslami and D D Ganji J. Appl. Fluid Mech., 7(3) 535 (2014)

  37. M Sheikholeslami, Z Ziabakhsh and D D Ganji, Colloids Surf A Physicochem. Eng. Aspects, 520 201 (2017)

    Article  Google Scholar 

  38. K R Cramer and S I Pai Washington DC (1973).

  39. M S Kandelousi Phys. Lett. A 378 3331 (2014)

    Article  ADS  Google Scholar 

  40. C Golia and A Viviani L’Aerotechn. Missili e Spaz. 64 29 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Ganji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikholeslami, M., Ganji, D.D. Analytical investigation for Lorentz forces effect on nanofluid Marangoni boundary layer hydrothermal behavior using HAM. Indian J Phys 91, 1581–1587 (2017). https://doi.org/10.1007/s12648-017-1054-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-017-1054-7

Keywords

PACS Nos.

Navigation