Skip to main content
Log in

Modified Green–Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress-free surface

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present study is concerned with the reflection and propagation of thermoelastic harmonic plane waves from the stress-free and isothermal surface of a homogeneous, isotropic thermally conducting elastic half-space in the frame of the modified Green–Lindasy (MGL) theory of generalized thermoelasticity with strain rate proposed by Yu et al. (Meccanica 53:2543–2554, 2018). The thermoelastic coupling effect creates two types of coupled longitudinal waves which are dispersive as well as exhibit attenuation. Different from the thermoelastic coupling effect, there also exists one independent vertically shear-type (SV-type) wave. In contrast to the classical Green–Lindsay (GL) and Lord–Shulman (LS) theories of generalized thermoelasticity, the SV-type wave is not only dispersive in nature but also experiences attenuation. Analytical expressions for the amplitude ratios of the reflected thermoelastic waves are determined when a coupled longitudinal wave is made incident on the free surface. The paper concludes with the numerical results on the phase speeds and the amplitude ratios for specific parameter choices. Various graphs have been plotted to analyze the behavior of these quantities. The characteristics of employing the MGL model are discussed by comparing the numerical results obtained for the present model with those obtained in case of the GL and LS models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M Biot J. Appl. Phys. 27 240 (1956)

    MathSciNet  ADS  Google Scholar 

  2. H W Lord and Y Shulman J. Mech. Phys. Solids 15 299 (1967)

    ADS  Google Scholar 

  3. C Cattaneo Comptes. Rendus. Acad. Sci. 2 431 (1958)

    Google Scholar 

  4. A E Green and K A Lindsay J. Elast. 2 1 (1972)

    Google Scholar 

  5. A E Green and P M Naghdi Proc. R. Soc. Lond. A 432 171 (1991)

    ADS  Google Scholar 

  6. A E Green and P M Naghdi J. Therm. Stresses 15 253 (1992)

    ADS  Google Scholar 

  7. A E Green and P M Naghdi J. Elast. 31 189 (1993)

    MathSciNet  Google Scholar 

  8. M Marin Acta Mech 122 155 (1997)

    MathSciNet  Google Scholar 

  9. H H Sherief, A M A El-Sayed and A M A El-Latief Int. J. Solids Struct. 47 269 (2010)

    Google Scholar 

  10. H M Youssef J. Heat Trans. 132 61301-1 (2010)

    Google Scholar 

  11. Y Z Povstenko J. Therm. Stresses 34 97 (2011)

    Google Scholar 

  12. Y J Yu, W Hu and X-G Tian Int. j. Eng. Sci. 81 123 (2014)

    Google Scholar 

  13. M Bachher, N Sarkar and A Lahiri Int. J. Mech. Sci. 89 84 (2014)

    Google Scholar 

  14. Y J Yu, X-G Tian and Q-L Xion Eur. J. Mech. A Solids 60 238 (2016)

    MathSciNet  ADS  Google Scholar 

  15. Y J Yu, Z-N Xu, C-L Li and X-G Tian Compos. Struct. 146 108 (2016)

    Google Scholar 

  16. M Marin Contin. Mech. Thermodyn. 29 1365 (2017)

    MathSciNet  ADS  Google Scholar 

  17. K Lotfy, R Kumar and W Hassan Appl. Math. Mech. Engl. Ed. 39 783 (2018)

    Google Scholar 

  18. K Lotfy Sci. Rep. 9 3319 (2019)

    ADS  Google Scholar 

  19. K Lotfy Wave Random. Complex (2019) https://doi.org/10.1080/17455030.2019.1580402

  20. Y J Yu, Z-N Xue and X-G Tian Meccanica 53 2543–2554 (2018)

    MathSciNet  Google Scholar 

  21. R Quintanilla Meccanica 53 3607 (2018)

    MathSciNet  Google Scholar 

  22. P Chadwick and I N Sneddon J. Mech. Phys. Solids 6 223 (1958)

    MathSciNet  ADS  Google Scholar 

  23. A H Nayfeh and S Nemat-Nasser Acta Mech. 12 53 (1971)

    Google Scholar 

  24. P Puri Int. J. Eng. Sci. 11 735 (1973)

    Google Scholar 

  25. V K Agarwal Acta Mech. 34 185 (1979)

    Google Scholar 

  26. S K Roychoudhuri and S Mukhopadhyay Int. J. Math. Math. Sci. 23 497 (2000)

    MathSciNet  Google Scholar 

  27. S B Sinha and K A Elsibai J. Therm. Stresses 20 129 (1997)

    Google Scholar 

  28. J N Sharma, V Kumar and D Chand J. Therm. Stresses 26 925 (2003)

    Google Scholar 

  29. M I A Othman and Y Q Song Acta Mech. 184 189 (2006)

    Google Scholar 

  30. M I A Othman and Y Q Song Int. J. Solids Struct. 44 5651 (2007)

    Google Scholar 

  31. N D Gupta, A Lahiri and N C Das Math. Mech. Solids17 543 (2011)

    Google Scholar 

  32. S M Abo-Dahab Can. J. Phys. 93 1 (2015)

    Google Scholar 

  33. S Biswas and N Sarkar Mech. Mater. 126 140 (2018)

    Google Scholar 

  34. Y Li, W Wang, P Wei and C Wang Meccanica 53 2921 (2018)

    MathSciNet  Google Scholar 

  35. N Sarkar and S K Tomar J. Therm. Stresses42 580 (2019)

    Google Scholar 

  36. S Mondal, N Sarkar and N Sarkar J. Therm. Stresses42 1035 (2019)

    Google Scholar 

  37. N Das, N Sarkar and A Lahiri Appl. Math. Model.73 526 (2019)

    MathSciNet  Google Scholar 

  38. K Lotfy, S M Abo-Dahab and R Tantawy Silicon (2019) https://doi.org/10.1007/s12633-019-00116-6

    Article  Google Scholar 

  39. D S Chandrasekharaiah Mech. Res. Commun. 23 549 (1996)

    Google Scholar 

  40. V K Agarwal Acta Mech. 34 181 (1979)

    MathSciNet  Google Scholar 

  41. S K Roychoudhuri J. Elast. 15 59 (1985)

    Google Scholar 

  42. J N Sharma, D Grover and D Kaur Appl. Math. Model. 35 3396 (2011)

    MathSciNet  Google Scholar 

  43. J D Achenbach Wave Propagation in Elastic Solids (New York: North-Holland) (1976)

    MATH  Google Scholar 

  44. M C Singh and N Chakraborty Appl. Math. Model. 37 463 (2013)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nantu Sarkar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, N., De, S. & Sarkar, N. Modified Green–Lindsay model on the reflection and propagation of thermoelastic plane waves at an isothermal stress-free surface. Indian J Phys 94, 1215–1225 (2020). https://doi.org/10.1007/s12648-019-01566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01566-9

Keywords

PACS Nos.

Navigation