Skip to main content
Log in

Bloch wave concept: transmission line model based on protein polarized dendrites treated as dielectric waveguide resonator

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nowadays, the physical analogy in biology has become a desirable research domain for academics. Here, we discussed many exciting features regarding the biological system that could help us to understand the underlying mechanism inside it. This manuscript focuses on the soliton/Bloch wave concept along with the periodic active protein polarized dendrite. The velocity of the existent soliton wave is identified by considering the transmission line model of protein polarized dendrite as a dielectric waveguide. This paper aims to understand and explore the mechanisms of biological rhythms and the role of neural oscillations and synchrony in information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J H Byrne and S G Schultz Introduction to Membrane Transport and Biolectricity. (New York) 232 (1988)

  2. S F Gilbert and S Sarkar Embracing Complexity: Organicism for the 21st Century (Developmental dynamics) 219(1) 1(2000)

  3. J E Lugo, R Doti, R Agarwal, K Ray, and J Faubert Adv. Sci. Eng. Med. 7(1) 62 (2015)

  4. C Kittel Crystal Structure. Introduction to Solid State Physics (Wiley), 8th ed, p 3 (2005)

  5. D W Prather Photonic Crystals, Theory, Applications, and Fabrication (Wiley) (2009)

  6. M I Hussein A Math. Phys. Eng. Sci. 2825 (2009)

  7. J D Joannopoulos, SG Johnson, JN Winn, and RD Meade Photonic Crystals: Molding the Flow of Light (Princeton university press) (2011)

  8. J P Vigneron and P Simonis Phys. B Condens. Matter 407(20) 4032–4036 (2012)

    Article  ADS  Google Scholar 

  9. H Onslow. Nature 106 181 (1920)

    Article  ADS  Google Scholar 

  10. Z Jian, Y Xindi, L Yizhou, H Xinhua, X Chun, W Xingjun, L Xiaohan, and F Rongtang Proceedings of the National Academy of Science 100(22) 12576 (2003)

  11. PC Bressloff & JD Cowan Physica D: Nonlinear Phenomena 173(3) 226 (2002)

  12. D L Sekulic, M. V. Sataric, M. B. Zivanov, J. S. Bajic Elektronika ir Elektrotechnika 121(5) 53 (2012)

    Google Scholar 

  13. A C Scott, CF Y F hu, D W McLaughlin Proceedings of the IEEE 61(10) 1443 (1973)

    Article  ADS  Google Scholar 

  14. D Li and J Zhao Chin. Phys. Lett 26 5 (2009)

    Google Scholar 

  15. J Mozziconacci, L Sandblad, M Wachsmuth, D Brunner, and E Karsenti PLoS ONE 3(11) e3821 (2008)

  16. D Chrétien, SD Fuller, and E Karsenti J. Cell Biol. 129(5) 1311 (1995)

  17. R Pizzi, G Strini, S Fiorentini, V Pappalardo and M Pregnolato Evidences of new biophysical properties of microtubules (In: Artificial Neural Networks) ch 20, ISBN: 978-1-61761-553-5 (2010).

  18. S Hamer off and R Penrose, J. Consciouss. Stud. 2 98 (1995)

  19. M Jibu, S Hagan, S Hameroff, K Pribram and K. Yasue Biosystems 32 195 (1994)

  20. S. Hameroff, R. Penrose Physics of Life Reviews 11(1) 39 (2013)

  21. Z G Ma John Journal of Natural and Social Philosophy 13(2) (2017)

  22. W Malfiet Am. J. Phys. 60 650 (1992)

  23. P Sachdev Non Linear Diffusion Equation (Cambridge) p. 9 (1987)

  24. E Infeld and G. Rowlands Non-Linear Waves, Solitons and Chaos (Cambridge) p. 1 (1990)

  25. G Eilenberger Solitons (springer, berlin) p. 140 (1993)

  26. P Drazin, R. Johnson Solitons: an Introduction (Cambridge) p. 20 (1989)

  27. G Whitham Linear and Non linear Waves (Wiley, New York) p. 577 (1974)

  28. E Başar Dialogues Clin Neurosci 15(3) 291 (2013)

  29. R Bódizs, T Kis, AS Lázár, L Havrán, P Rigó, Z Clemens, P Halász J. Sleep Res. 14(3) 285 (2005)

    Article  Google Scholar 

  30. LV Moran and LE Hong Schizophrenia Bull. 37(4) 659(2011)

  31. K Ray, R Agarwal, LA Cacha, &RR Poznanski Protein polarization induced bloch waves in axonal fibres (11th International Conference on Vibration Problems) (Lisbon, Portugal) p. 9 (2013)

  32. K Wang, W J Rappel, and H Levine Physical biology1(1) 27 (2004)

  33. W Hereman and M Takaoka J. Phys. A: Math Gen. 23, 4805 (1990)

    Article  ADS  Google Scholar 

  34. A. Dold and B. Eckmann Backlund Transformations” Lecture Notes in Mathematics (Springer, Berlin) vol. 515, p. 10 (1974)

  35. F Varela, J P Lachaux, E Rodriguez, and J Martinerie Nat. Rev. Neurosci. 2 229 (2001)

  36. E Basar, C Basar-Eroˇglu, S Karakas, and M. Schürmann Int. J. Psychophysiol. 35 95 (2000)

  37. W Klimesch, M Doppelmayr, T H Pachinger, and B. Ripper Neurosci. Lett. 238 9 (1997)

  38. W Klimesch Brain. Res. Rev. 29 169 (1999)

  39. K A Lindsay, J R Rosenberg, and G Tucker Prog. Biophys. And Molec. Biol. 85 71 (2004)

    Article  Google Scholar 

  40. R R Poznanski Phys. Rev. E 81 021902 (2010)

  41. L A Cacha and R R Poznanski J. Integr. Neurosci. 10 423 (2011)

    Article  Google Scholar 

  42. D Aur and M S Jog Neuroelectrodynamics: Understanding the Brain Language (IOS Press, The Netherlands) (2010)

    Google Scholar 

  43. R J Douglas and M K Cliford IEEE MTT-S Digest. 3 1831 (2004)

  44. E Afshari and A Hajimiri IEEE J. Solid-State Circuits 40 3 (2005)

    Article  Google Scholar 

  45. A M Dikande and G A Bartholomew Phys. Rev. E. 80 041904 (2009)

    Article  ADS  Google Scholar 

  46. R R Poznanski, L A Cacha, J. Ali, P P. Yupapin, S H Salleh, A. Bandyopadhya PLOS (2017). https://doi.org/10.1371/journal.pone.0183677

    Article  Google Scholar 

  47. R R Poznanski and L A Cacha J. Integr. Neurosci 11 417 (2012)

    Article  Google Scholar 

  48. R R Poznanski, L A Cacha, Y M S Al-Wesabi, J Ali, M. Bahadoran, P P. Yupapin,and Y. Yunus Scientific Reports7 2746 (2017)

  49. Kogelink, G., Theory of Dielectric Waveguide https://pdfs.semanticscholar.org/72d9/87b71d4f470bc6b8cfdb145f54c252ff230b.pdf

  50. A Mershin, AA Kolomenski, HA Schuessler, DV Nanopoulos Biosystems 77 73 (2004)

    Article  Google Scholar 

  51. S R Hameroff Neuro-Quantol. 5(1) 1 (2007)

  52. J L Powell, B Crasemann Quant. Mech. (1961)

  53. C. Kittel Introduction to Solid State Physics (Wiley, New York) (1996)

  54. J Binney and D Skinner The Physics of Quantum Mechanics (Cappella Archive) revised printings (2009, 2010, 2011).

  55. M Ali, Y Pham Quantum Tunneling (SRJC PHYS43) (Springer) (2014)

  56. F Trixler Curr. Organic Chem. 17 1758 (2013)

  57. Sigrid and Sigurd, Band theory of solids: March 24 (2010)

  58. M L Smith PNAS 103(14) 5626 (2006)

  59. A N Burkitt Biol. Cybern. 95(1) 1 (2006)

  60. J Feng, P. Zhang Phys. Rev. E, Statistic. Phys. Plasmas Fluids Relat. Interdisciplinary Topics 63(5) (2001)

  61. J M Stroud Inf. Theory Psychol. 174 (1956)

  62. C T Tart Personal Communication and Information Gathered from Buddha-1 newsnet. (1995)

  63. K Ray and M K Roy A theoretical basis for brain waves with implications for a large scale integration required for cognitive process (IEEE Computer Society) p 436 (2010)

Download references

Acknowledgements

The authors express sincere thanks to Prof. S L Kothari, Vice President, ASTIF, AUR for his support and encouragement.

Author information

Authors and Affiliations

Authors

Contributions

KR and AB designed research; PS performed research. All authors wrote the paper.

Corresponding author

Correspondence to Kanad Ray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Lugo, J.E., Faubert, J. et al. Bloch wave concept: transmission line model based on protein polarized dendrites treated as dielectric waveguide resonator. Indian J Phys 95, 815–822 (2021). https://doi.org/10.1007/s12648-020-01761-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01761-z

Keywords

PACS No.

Navigation