Skip to main content
Log in

Monte Carlo simulation study of multiferroic perovskite: YFeO3

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The magnetoelectric effect in YFeO3 multiferroic was studied via Monte Carlo simulation. The variation of magnetization and polarization of YFeO3 versus temperature was determined. The magnetic transition at transition temperature TC and ferroelectric transition at TF are obtained. Magnetic hysteresis cycles and loops are established. The magnetic coercive field and remanent magnetization decrease with increasing temperature and becomes equal to zero at the transition temperature. Dependence of polarization with the external magnetic field of YFeO3 has been given. YFeO3 system exhibits the superparamagnetism behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W S Choi et al. Phys. Rev. B 78 054440 (2008)

    Article  ADS  Google Scholar 

  2. W Prellier, M P Singh and P Murugavel. J. Phys.-Condes. Matter. 17 803 (2005)

  3. X L Wang, D Li, T Y Cui, P Kharel, W Liu and Z D Zhang J. Appl. Phys. 107 09B510 (2010)

    Article  Google Scholar 

  4. H Schmid Ferroelectrics 162 317 (1994)

    Article  Google Scholar 

  5. R Ramesh and N A Spaldin Nat. Mater. 6 21 (2007)

    Article  ADS  Google Scholar 

  6. M Shang et al. Appl. Phys. Lett. 102 062903 (2013)

    Article  ADS  Google Scholar 

  7. E Vlakhov et al. J. Optoelectron. Adv. M. 9 456 (2007)

    Google Scholar 

  8. L Wu, J Yu, L Zhang, X Wang and S Li J. Solid State Chem. 177 3666 (2004)

    Article  ADS  Google Scholar 

  9. T Goto, T Kimura, G Lawes, A P Ramirez and Y Tokura Phys. Rev. Lett. 92 257201 (2004)

    Article  ADS  Google Scholar 

  10. H Kuwahara, K Noda, J Nagayama, and S Nakamura, in Proceedings of International Conference on Strongly Correlated Electron Systems (Karlsluhe, Germany, 2004), p. 124

  11. M Wang, T Wang, S-H Song, M Ravi, R C Liu and S Ji Ceram. Int. 43 10270 (2017)

    Article  Google Scholar 

  12. T Katsufuji and H Takagi Phys. Rev. B 64 054415 (2001)

    Article  ADS  Google Scholar 

  13. J F Scott Phys. Rev. B 16 2329 (1977)

    Article  ADS  Google Scholar 

  14. G Lawes, A P Ramirez, C M Varma and M A Subramanian Phys. Rev. Lett. 91 257208 (2003)

    Article  ADS  Google Scholar 

  15. M K Warshi, V Mishra, V Mishra, R Kumara and P R Sagdeo Ceram. Int. 44 13507 (2018)

    Article  Google Scholar 

  16. D Stoeffler and Z Chaker J. Magn. Magn. Mater. 442 255 (2017)

    Article  ADS  Google Scholar 

  17. M Dhilip, N Aparna Devi, J S Punitha, V Anbarasu and K S Kumar Vacuum 167 16 (2019)

    Article  ADS  Google Scholar 

  18. M Sukumar, L John Kennedy, J Judith Vijaya, B Al-Najar, M Bououdina and G Mudhana Vacuum 167 407 (2019)

    Article  ADS  Google Scholar 

  19. K Wang, N Si, Y L Zhang, F Zhang, A B Guo and W Jiang Vacuum 165 105 (2019)

    Article  ADS  Google Scholar 

  20. A S Erchidi Elyacoubi, R Masrour and A Jabar Phase Transitions. 92 556 (2019)

    Article  Google Scholar 

  21. A Jabar, R Masrour, A Benyoussef and M Hamedoun J. Supercond. Novel Magn. 29 733 (2016)

    Article  Google Scholar 

  22. Z Y Wang, W Wang, Q Li, M Tian, Z Y Gao and Y Liu Physica E. 110 127 (2019)

    Article  ADS  Google Scholar 

  23. A K Murtazaev and I K Kamilov Low Temperature Phys. 32 932 (2006)

    Article  ADS  Google Scholar 

  24. R Masrour, A Jabar, M S Ben Kraiem, M Ellouze, N Randrianantoandro and S Labidi Indian J Phys. 94 1717 (2020)

    Google Scholar 

  25. A Jabar, R Masrour, M Hamedoun and A Benyoussef Indian J Phys. 91 1553 (2017)

    Article  ADS  Google Scholar 

  26. A Jabar and R Masrour Indian J Phys. 91 1159 (2017)

    Article  ADS  Google Scholar 

  27. R Masrour, A Jabar, A Benyoussef, M Hamedoun and E K Hlil Indian J Phys. 90 819 (2016)

    Article  ADS  Google Scholar 

  28. R Masrour, L Bahmad, E K Hlil, M Hamedoun and A Benyousef Indian J Phys. 90 539 (2016)

    Article  ADS  Google Scholar 

  29. R Masrour, L Bahmad, E K Hlil, M Hamedoun and A Benyoussef Indian J Phys. 89 699 (2015)

    Google Scholar 

  30. P Blaha, K Schwarz, GKH Madsen, D Kvasnicka, J Luitz, R Laskowsket al. WIEN2k, An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties, Vienna University of Technology, Vienna, Austria, 2001

  31. Z X Cheng et al. J. Appl. Phys. 111 034103 (2012)

    Article  ADS  Google Scholar 

  32. M E J Newman and G T Barkema Monte Carlo Methods in Statistical Physics. (Oxford: Clarendon Press) (1999)

    MATH  Google Scholar 

  33. N Metropolis, A W Rosenbluth, M N Rosenbluth, A H Teller and E Teller J Chem Phys. 21 1087 (1953)

    Article  ADS  Google Scholar 

  34. B Deka, S Ravi, A Perumal and D Pamu Ceram. Intern. 43 1323 (2017)

    Article  Google Scholar 

  35. O R González, F S D Jesús, F P García, C A C Escobedo, M R Cardona and A M B Miró Mater. 12 2054 (2019)

    Article  Google Scholar 

  36. H Das, A L Wysocki, Y Geng, W Wu and C J Fennie Nat Commun 5 2998 (2014)

    Article  ADS  Google Scholar 

  37. U Chowdhury, S Goswami, D Bhattacharya, J Ghosh, S Basu and S Neogi Appl. Phys. Lett. 105 052911 (2014)

    Article  ADS  Google Scholar 

  38. C Zhang, X Wang, Z Wang, H Yan, H Li and L Li Ceram. Int. 42 19461 (2016)

    Article  Google Scholar 

  39. I Das, S Chanda, A Dutta, S Banerjee and T Sinha J. Alloy. Compd. 571 56 (2013)

    Article  Google Scholar 

  40. BS Nagrare, SS Kekade, B Thombare, RV Reddy and SI Patil. Solid. State. Commun. 280 32 (2018)

  41. Y Noda, H Kimura, M Fukunaga, S Kobayashi, I Kagomiya and K Kohn J. Phys.: Condens. Matter. 20 434206 (2008)

    ADS  Google Scholar 

  42. D Higashiyama, S Miyasaka and Y Tokura Phys. Rev. B. 72 064421 (2005)

    Article  ADS  Google Scholar 

  43. I Dzyaloshinsky J. Phys. Chem. Solids. 4 241 (1958)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erchidi Elyacoubi, A.S., Masrour, R. & Jabar, A. Monte Carlo simulation study of multiferroic perovskite: YFeO3. Indian J Phys 96, 1351–1355 (2022). https://doi.org/10.1007/s12648-021-02060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02060-x

Keywords

Navigation