Skip to main content
Log in

Slip flow of Casson–Maxwell nanofluid confined through stretchable disks

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This study reports an incompressible electrically conducting Casson–Maxwell fluid flow confined across two uniformly stretchable disks. Buongiorno nanofluid model is implemented in the fluid flow. Cattaneo–Christov theory of double-diffusion is characterized through the heat and mass equations. Velocity, thermal and concentration slip conditions are executed at the lower stretchable disk. The flow model is dimensionalized through the similarity functions and then numerical solution is attained by RKF-45 scheme combined with shooting technique. The results of physical parameters are discussed by plotting the effects of such parameters on velocity, thermal and concentration fields. The results revealed that the Maxwell liquid is highly effected by Lorentz force than the Casson liquid. Thermal gradient of Maxwell liquid is highly influenced by stretching ratio parameter when compared to Casson fluid. Increase in Casson parameter and Deborah number declines the velocity gradient. Rise in the values of Brownian motion parameter declines the concentration gradient. Finally, the upsurge in thermal relaxation time parameter enhances the thermal gradient quickly in absence of thermal slip parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S A Shehzad, T Hayat and A Alsaedi Comput. Appl. Math. 37 2932 (2018).

    Article  MathSciNet  Google Scholar 

  2. M I Khan, M Waqas, T Hayat and A Alsaedi J. Colloid Interf. Sci. 498 85 (2017).

    Article  ADS  Google Scholar 

  3. S Shaw, A S Dogonchi, M K Nayak and O D Makinde Arab. J. Sci. Eng. 45 5471 (2020).

    Article  Google Scholar 

  4. M Sohail and Z Shah Sci. Rep. 10 12530 (2020).

    Article  ADS  Google Scholar 

  5. U Farooq, M A Ijaz, M I Khan, S Suzillianaa, P Mohamed and D Chen Int. Commun. Heat Mass Transf. 119 104955 (2020).

    Article  Google Scholar 

  6. S Rashid, M I Khan, T Hayat, M Ayub and A Alsaedi Appl. Nanosci. 10 2965 (2020).

    Article  Google Scholar 

  7. M Khan, J Ahmed and W Ali J. Therm. Anal. Calorim. (2020). https://doi.org/10.1007/s10973-020-09322-6

    Article  Google Scholar 

  8. S A Shehzad, F Mabood, A Rauf and I Tlili Int. Commun. Heat Mass Transf. 116 104693 (2020).

    Article  Google Scholar 

  9. H Waqas, M Imran and M M Bhatti Chin. J. Phys. 68 558 (2020).

    Article  Google Scholar 

  10. M Turkyilmazoglu Phys. Fluids 21 106104 (2009).

    Article  ADS  Google Scholar 

  11. M Turkyilmazoglu Int. J. Eng. Sci. 51 233 (2012).

    Article  Google Scholar 

  12. J Ahmed, M Khan and L Ahmad Chin. J. Phys. 60 22 (2019).

    Article  Google Scholar 

  13. V B Awati, O D Makinde and M Jyoti Eng. Comput. 35 1655 (2018).

    Article  Google Scholar 

  14. P G R Jayadevamurthy, N K Rangaswamy, B C Prasannakumara and K S Nisar Numer. Methods Part. Differ. Equ. (2020). https://doi.org/10.1002/num.22680

    Article  Google Scholar 

  15. K V Prasad, H Vaidya, O D Makinde, K Vajravelu and V Ramajini Latin Am. Appl. Res. Int. J. 50 159 (2020).

    Article  Google Scholar 

  16. R J Punith Gowda et al Surf. Interface 22 100864 (2021).

    Article  Google Scholar 

  17. J Buongiorno J. Heat Transf. 128 240 (2006).

    Article  Google Scholar 

  18. M Sheikholeslami and H B Rokni Chin. J. Phys. 55 1115 (2017).

    Article  Google Scholar 

  19. J A Khan, M Mustafa, T Hayat and F Alzahrani Ind. J. Phys. 91 527 (2017).

    Article  Google Scholar 

  20. M Turkyilmazoglu Int. J. Heat Mass Transf. 126 974 (2018).

    Article  Google Scholar 

  21. M Khan, A Ahmed and J Ahmed Appl. Math. Mech. 41 655 (2020).

    Article  Google Scholar 

  22. M Turkyilmazoglu Comput. Methods Prog. Biomed. 179 104997 (2019).

    Article  Google Scholar 

  23. M Izadi Chin. J. Chem. Eng. 28 1203 (2020).

    Article  Google Scholar 

  24. M Khan, M Sarfraz, J Ahmed, L Ahmad and C Fetecau Appl. Math. Mech. 41 725 (2020).

    Article  Google Scholar 

  25. M Izadi A Behzadmehr and M M Shahmardan Chem Eng. Commun. 202 1693 (2015).

    Article  Google Scholar 

  26. T Armaghani, A Kasaeipoor, M Izadi and I Pop Int. J. Numer. Methods Heat Fluid Flow 28 2916 (2018).

    Article  Google Scholar 

  27. M Izadi, M A Sheremet, S A M Mehryan, I Pop, H F Öztop and N Abu-Hamdeh Int. Commun. Heat Mass Transf. 110 104409 (2020).

    Article  Google Scholar 

  28. M Izadi, M A Sheremet and S A M Mehryan Chin. J. Phys. 65 447 (2020).

    Article  Google Scholar 

  29. R Mohebbi, S A M Mehryan, M Izadi and O Mahian J. Therm. Anal. Calorim. 137 1719 (2019).

    Article  Google Scholar 

  30. T Hayat, S Qayyum, S A Shehzad and A Alsaedi Res. Phys. 8 489 (2018).

    Google Scholar 

  31. K Gowthami, P H Prasad, B Mallikarjuna and O D Makinde 393 138 (2019).

  32. S A Shehzad, T Mushtaq, Z Abbas and A Rauf J. Therm. Anal. Calorim. 143 445 (2021).

    Article  Google Scholar 

  33. R J P Gowda et al Chaos Solitons Fract. 145 110774 (2021).

    Article  Google Scholar 

  34. S A Shehzad, M G Reddy, A Rauf and Z Abbas Phys. Scrip. 95 045207 (2020).

    Article  ADS  Google Scholar 

  35. T Hayat, A Nassem, M I Khan, M Farooq and A Al-Saedi Phys. Chem. Liq. 56 189 (2018).

    Article  Google Scholar 

  36. M I Khan, F Alzahrani, A Hobiny and Z Ali Integr. Med. Res. 9 6172 (2020).

    Google Scholar 

  37. S Qayyum, M I Khan, W Chamam, W A Khan, Z Ali and W Ul-Haq Mod. Phys. Lett. B 34 2050383 (2020).

    Article  ADS  Google Scholar 

  38. M G Reddy, R J P Gowda, R N Kumar, B C Prasannakumara and K G Kumar Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 09544089211001353 (2021). https://doi.org/10.1177/09544089211001353.

  39. A Ali, N Umar, Z Bukhari and Z Abbas Resu. Phys. 19 103544 (2020).

    Article  Google Scholar 

  40. T Hayat, S Qayyum, M Imtiaz and A Alsaedi Res. Phys. 7 126 (2017).

    Google Scholar 

  41. Z Abbas, T Mushtaq, S A Shehzad, A Rauf and R Kumar J. Braz. Soc. Mech. Sci. Eng. 41 465 (2019).

    Article  Google Scholar 

  42. M S Kumar, N Sandeep, B R Kumar and S Saleem Alex. Eng. J. 57 2027 (2018).

    Article  Google Scholar 

  43. M M Hashmi, T Hayat and A Alsaedi Nonlinear Anal. Model Control 17 418 (2012).

    Article  MathSciNet  Google Scholar 

  44. K Ali, S Ahmad and M Ashraf Thermal Sci. 21 2155 (2017).

    Article  Google Scholar 

  45. M Turkyilmazoglu Mediterr. J. Math. 13 4019 (2016).

    Article  MathSciNet  Google Scholar 

  46. I V Shevchuk Convective Heat and Mass Transfer in Rotating Disk Systems. (Berlin: Springer) (2009)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowda, R.J.P., Rauf, A., Naveen Kumar, R. et al. Slip flow of Casson–Maxwell nanofluid confined through stretchable disks. Indian J Phys 96, 2041–2049 (2022). https://doi.org/10.1007/s12648-021-02153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02153-7

Keywords

Navigation