Skip to main content
Log in

Stefan blowing on chemically reactive nano-fluid flow containing gyrotactic microorganisms with leading edge accretion (or) ablation and thermal radiation

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present study analyzes the forced convective boundary layer flow of viscous incompressible time-established fluid. The base fluid containing water-based nanoparticles and gyrotactic microbes. The flat surface is considered with leading-edge accretion (or) ablation. Characteristics of flow are explored by the impacts of thermal radiation and constructive/destructive chemical reaction. The present flow problem is formed with the partial differential equations, and transformed nonlinear boundary value problems are solved mathematically by the finite difference with the collocation method. There is a good correlation between present work and previous work. Results of selected parameters on velocity, temperature, nanoparticles volume fraction, and microbe density function are discovered. Skin friction, heat transport, mass transfer, and microbes transfer rates are tabular. Efforts of the current work rise in progressive microflow devices to bio-modified nanomaterial dispensation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(\overrightarrow {{V_{1} }}\) :

Velocity vector \(\left( {{\text{ms}}^{{ - 1}} } \right)\)

\(\overrightarrow {{V_{2} }}\) :

Average swimming velocity vector of microorganisms \(\left( {{\text{m}}^{2} {\text{s}}^{{ - 1}} } \right)\)

\(\left( {u_{1} ,v_{1} } \right)\) :

Velocity components \(\left( {{\text{ms}}^{{ - 1}} } \right)\)

\(\left( {x_{1} ,y_{1} } \right)\) :

Cartesian coordinates \(\left( {\text{m}} \right)\)

\(C_{\infty }\) :

Ambient nanoparticle volume fraction

\({\text{Cf}}_{{x_{1} }}\) :

Skin friction coefficient

\(C_{w}\) :

Wall nanoparticle volume fraction

\(D_{B}\) :

Brownian diffusion coefficient

\(D_{T} ~\) :

Thermophoresis diffusion coefficient

\(D_{n}\) :

Micoorganism diffusion coefficient

\({\text{Nn}}_{{x_{1} }}\) :

Local density number of motile microorganisms

\({\text{Nu}}_{{x_{1} }}\) :

Local Nusselt number

\({\text{Sh}}_{{x_{1} }}\) :

Local Sherwood number

\(T_{\infty }\) :

Ambient temperature \(\left( {\text{K}} \right)\)

\(T_{w}\) :

Wall temperature \(\left( {\text{K}} \right)\)

\(U_{\infty }\) :

Dimensional ambient velocity \(\left( {{\text{ms}}^{{ - 1}} } \right)\)

\(W_{c}\) :

Maximum cell swimming speed \(\left( {{\text{ms}}^{{ - 1}} } \right)\)

\(\bar{b}\) :

Chemotaxis constant \(\left( {\text{m}} \right)\)

\(c_{p}\) :

Specific heat \(\left( {{\text{Jkg}}^{{ - 1}} {\text{K}}^{{ - 1}} } \right)\)

\(\vec{j}\) :

Vector flux of microorganisms \(\left( {{\text{kgm}}^{{ - 2}} {\text{s}}^{{ - 1}} } \right)\)

\(k^{*}\) :

Mean absorption coefficient \(\left( {1{\text{m}}^{{ - 1}} } \right)\)

\(n_{w}\) :

Wall motile microorganisms

\(C\) :

Nanoparticle volume fraction

\({\text{Kr}}\) :

Chemical reaction parameter

\({\text{Lb}}\) :

Bioconvection Lewis number

\({\text{Le}}\) :

Lewis number

\({\text{Nb}}\) :

Brownian motion parameter

\({\text{Nt}}\) :

Thermophoresis parameter

\({\text{Pe}}\) :

Bioconvection Péclet number

\({\text{Pr}}\) :

Prandtl number

\({\text{Rd}}\) :

Radiation parameter

\({\text{Re}}\) :

Reynolds number

\(T\) :

Nano-fluid temperature \(\left( {\text{K}} \right)\)

\(f\) :

Dimensionless stream function

\(k\) :

Thermal conductivity \(\left( {{\text{Wm}}^{{ - 1}} {\text{K}}^{{ - 1}} } \right)\)

\(n\) :

Number of motile microorganisms

\(s\) :

Wall mass flux (Stefan blowing)

\(t\) :

Dimensional time \(\left( {\text{s}} \right)\)

\(\sigma ^{*}\) :

Stefan Boltzmann constant \(\left( {{\text{Wm}}^{{ - 2}} {\text{K}}^{{ - 4}} } \right)\)

\(\alpha\) :

Thermal diffusivity \(\left( {{\text{m}}^{2} {\text{s}}^{{ - 1}} } \right)\)

\(\gamma\) :

Leading edge accretion/ablation

\(\theta\) :

Dimensionless temperature

\(\mu\) :

Dynamic viscosity \(\left( {{\text{kg~}}\;{\text{m}}^{{ - 1}} {\text{s}}^{{ - 1}} } \right)\)

\(\rho\) :

Fluid density \(\left( {{\text{kg~}}\;{\text{m}}^{{ - 3}} } \right)\)

\(\chi\) :

Dimensionless number for motile microorganisms

\(\psi\) :

Stream function

\(\phi\) :

Dimensionless nanoparticles volume fraction

\(w\) :

Condition at wall

\(\infty\) :

Condition in free stream

References:

  1. SUS Choi In: Proceedings of the ASME international mechanical engineering congress and exposition FED 231/MD 66:99 (1995).

  2. J Buongiorno J Heat Transf. 128 240 (2006).

    Article  Google Scholar 

  3. W A Khan and I Pop Int. J. Heat Mass Transf. 53 2477 (2010).

    Article  Google Scholar 

  4. R Naz, F Mabood, M Sohail and I Tlili J. Mater. Res. Technol. 9 5577 (2020).

    Article  Google Scholar 

  5. M Sohail, R Naz and S I Abdelsalam Phys. Scr. 95 045206 (2020).

    Article  ADS  Google Scholar 

  6. M Sohail, R Naz and S I Abdelsalam Phys. A Stat. Mech. Appl. 537 122753 (2020).

    Article  Google Scholar 

  7. R Naz, S Tariq and H Alsulami Alexandria Eng. J. 59 247 (2020).

    Article  Google Scholar 

  8. S M R S Naqvi, T Muhammad and M Asma Physica A Stat Mech Appl. 550 123988 (2020).

    Article  Google Scholar 

  9. M V S Rao, K Gangadhar, A J Chamkha and P Surekha Arab J Sci Eng. 46 2493 (2021).

    Article  Google Scholar 

  10. M Sheikholeslami, A S Mikhail, S Ahmad and T Iskander Physica A Stat Mech Appl. 146 124058 (2020).

    Article  Google Scholar 

  11. H Hanif, I Khan and S Shafie J. Therm. Anal. Calorim. 141 2001–2017 (2020).

    Article  Google Scholar 

  12. I Shahzadi and S Bilal Comput. Methods Programs Biomed. 187 105248 (2020).

    Article  Google Scholar 

  13. M Zufar, P Gunnasegaran, H Kumar and K Ng Int. J. Heat Mass Transf. 146 118887 (2020).

    Article  Google Scholar 

  14. Z Chen, D Zheng and J Wang L Chen and B Sundén Renew Energy 147 1011 (2020).

    Google Scholar 

  15. P Nithya and M Sundrarajan J. Photochem. Photobiol. B: Biol. 202 111706 (2020).

    Article  Google Scholar 

  16. T J Choi, M S Park, S H Kim and S P Jang Int. J. Heat Mass Transf. 169 120903 (2021).

    Article  Google Scholar 

  17. C J Ho, C-Y Cheng, T-F Yang, S Rashidi and W-M Yan Int. J. Heat Mass Transf. 169 120961 (2021).

    Article  Google Scholar 

  18. N Ullah, S Nadeem and A Saleem J Taiwan Inst Chem Eng. 113 428 (2020).

    Article  Google Scholar 

  19. R Harish and R Sivakumar Int J Mech Sci. 190 106033 (2021).

    Article  Google Scholar 

  20. D Kushawaha, S Yadav and D K Singh Int J Mech Sci. 191 106085 (2021).

    Article  Google Scholar 

  21. V YaRudyak, A V Minakov and M I Pryazhnikov J Mol Liq. 329 115517 (2021).

    Article  Google Scholar 

  22. N H Abu-Hamdeh, R A R Bantan, A Golmohammadzadeh and D Toghraie J Mol Liq. 325 115149 (2021).

    Article  Google Scholar 

  23. M Bahiraei and N Mazaheri Adv Powder Technol. 32 211 (2021).

    Article  Google Scholar 

  24. Y Li, Y Zhai, M Ma, Z Xuan and H Wand Int. Commun. Heat Mass Transf. 122 105181 (2021).

    Article  Google Scholar 

  25. M H Esfe, M Bahiraei, A Torabi and M Valadkhani Int. Commun. Heat Mass Transf. 120 104859 (2021).

    Article  Google Scholar 

  26. A V Kuznetsov Int. Commun. Heat Mass Transf. 37 1421 (2020).

    Article  Google Scholar 

  27. A V Kuznetsov Nanoscale Res. Lett. 6 100 (2011).

    Article  ADS  Google Scholar 

  28. R R Kairi, S Shaw, S Roy and S Raut J. Heat Transfer. 143 031201 (2021).

    Article  Google Scholar 

  29. M K Nayak, J Prakash, D Tripathi, V S Pandey, S Shaw and O D Makinde Heat Transfer Asian Res. 49 135 (2020).

    Article  Google Scholar 

  30. V M Magagula, S Shaw and R R Kairi Heat Transfer Asian Res. 49 2449 (2020).

    Article  Google Scholar 

  31. R Naz Int. Commun. Heat Mass Transf. 117 104788 (2020).

    Article  Google Scholar 

  32. S U Khan, K Al-Khaled and M Ijaz Khan Int. Commun. Heat Mass Transf. 119 1966 (2020).

    Google Scholar 

  33. T Fang and W Jing Commun Nonlinear Sci Numer Simul. 19 3086 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  34. G Nellis, S Klein Cambridge University Press, New York, USA E23 (2009).

  35. JH IV Lienhard, JH V Lienhard 3rd edn. Phlogiston Press, Cambridge 662 (2005).

  36. J Uddin, M N Kabir and O A Beg Int J Heat Mass Transf. 95 116 (2016).

    Article  Google Scholar 

  37. L Todd Fluid Dyn Res. 19 235 (1997).

    Article  ADS  Google Scholar 

  38. N C Rosca and I Pop Comput Fluids. 95 49 (2014).

    Article  MathSciNet  Google Scholar 

  39. M F M Basir, M J Uddin, O A Beg and A I M Ismail J Braz. Soc. Mech. Sci. Eng. 39 4519 (2017).

    Article  Google Scholar 

  40. Y Menni, A Azzi and A Chamkha J Therm Anal Calorim 135 1951 (2019).

    Article  Google Scholar 

  41. Y Menni, A Azzi and A J Chamkha J Appl Comput Mech 4 375 (2018).

    Google Scholar 

  42. Y Menni, A J Chamkha and A Azzi Spec Top Rev Porous Media 9 1 (2018).

    Article  Google Scholar 

  43. Y Menni, A J Chamkha and A Azzi J Nanofluids 8 893 (2018).

    Article  Google Scholar 

  44. Y Menni et al. Spec Top Rev Porous Media 11 1 (2020).

    Article  Google Scholar 

  45. Y Menni et al. MMEP 6 415 (2019).

    Article  Google Scholar 

  46. N Sakhri, Y Menni, A J Chamkha, M Salmi and H Ameur J Eng Sci 64 83 (2020).

    Google Scholar 

  47. Y Menni, A J Chamkha, C Zidani and B Benyoucef Int J Numer Method H 30 3027 (2020).

    Article  Google Scholar 

  48. Y Menni, A J Chamkha, A Azzi, C Zidani and B Benyoucef MMEP 6 77 (2019).

    Article  Google Scholar 

  49. Y Menni, A Azzi and A J Chamkha J New Technol Mater 8 58 (2018).

    Article  Google Scholar 

  50. Y Menni, A Azzi and A J Chamkha Period Polytech Mech Eng 62 209 (2018).

    Article  Google Scholar 

  51. Y Menni, A Azzi and A J Chamkha Defect Diffus Forum 388 378 (2018).

    Article  Google Scholar 

  52. Y Menni, A Azzi, A J Chamkha and S Harmand Int J Numer Method H 29 3908 (2019).

    Article  Google Scholar 

  53. Y Menni, A Azzi, A J Chamkha and S Harmand J Appl Comput Mech 5 231 (2019).

    Google Scholar 

  54. Y Menni, A Azzi and A J Chamkha J Mech Eng Sci 12 3888 (2018).

    Article  Google Scholar 

  55. Y Menni, A Azzi and A J Chamkha J Appl Comput Mech 5 616 (2019).

    Google Scholar 

  56. Y Menni, A Azzi and A J Chamkha Int J Numer Method H 29 1815 (2019).

    Article  Google Scholar 

  57. Y Menni, A J Chamkha and A Azzi J Appl Comput Mech 6 741 (2020).

    Google Scholar 

  58. Y Menni, A J Chamkha, G Lorenzini and B Benyoucef MMEP 6 170 (2019).

    Article  Google Scholar 

  59. Y Menni, A J Chamkha, C Zidani and B Benyoucef Period Polytech Mech Eng 63 100 (2019).

    Article  Google Scholar 

  60. N Sakhri, Y Menni and A J Chamkha J Appl Comput Mech (2020). https://doi.org/10.22055/JACM.2020.31237.1843

    Article  Google Scholar 

  61. Y Menni, A J Chamkha, C Zidani and B Benyoucef MMEP 6 52 (2019).

    Article  Google Scholar 

  62. Y Menni, G Lorenzini, R Kumar, B Mosavati and S Nekoonam Math Probl Eng 2021 1 (2021).

    Article  Google Scholar 

  63. Y Menni, A Azzi and A J Chamkha Heat Trans Res 50 1781 (2019).

    Article  Google Scholar 

  64. Y Menni, A J Chamkha, A Azzi and C Zidani Int J Fluid Mech Res 47 23 (2020).

    Article  Google Scholar 

  65. A J Chamkha and Y Menni MMEP 7 178 (2020).

    Article  Google Scholar 

  66. Y Menni, A J Chamkha and O D Makinde Defect Diffus Forum 401 117 (2020).

    Article  Google Scholar 

  67. Y Menni, A J Chamkha, C Zidani and B Benyoucef MMEP 6 21 (2019).

    Article  Google Scholar 

  68. Y Menni, A J Chamkha, C Zidani and B Benyoucef Arch Thermodyn 41 33 (2020).

    Google Scholar 

  69. Y Menni, H Ameur, A J Chamkha, M Inc and B Almohsen Therm Sci 24 267 (2020).

    Article  Google Scholar 

  70. Y Menni et al. Numer Heat Transfer Part A Appl 79 311 (2021).

    Article  ADS  Google Scholar 

  71. M Salmi, Y Menni, A J Chamkha, H Ameur, R Maouedj and A Youcef Comput Model Eng Sci 126 147 (2021).

    Google Scholar 

  72. C J Ho, Y-C Liu, M Ghalambaz and W-M Yan Int J Heat Mass Transf 155 119858 (2020).

    Article  Google Scholar 

  73. M Ghalambaz and J Zhang Int J Heat Mass Transf 146 118832 (2020).

    Article  Google Scholar 

  74. S A M Mehryan, M Ghalambaz, L S Gargari, A Hajjar and M Sheremet J Energy Storage 28 101236 (2020).

    Article  Google Scholar 

  75. M Ghalambaz, S A M Mehryan, A Hajjar and A Veismoradi Adv Powder Technol 31 954 (2020).

    Article  Google Scholar 

  76. M Ghalambaz, S M H Zadeh, S A M Mehryan, I Pop and D Wen Appl Math Model 77 1936 (2020).

    Article  MathSciNet  Google Scholar 

  77. K Stewartson Math Proc Camb Philos Soc. 51 202 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  78. LF Shampine, J Kierzenka and MV Reichelt Tutorial Notes 1 (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali J. Chamkha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangadhar, K., Lakshmi, K.B., Kannan, T. et al. Stefan blowing on chemically reactive nano-fluid flow containing gyrotactic microorganisms with leading edge accretion (or) ablation and thermal radiation. Indian J Phys 96, 2827–2840 (2022). https://doi.org/10.1007/s12648-021-02179-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02179-x

Keywords

Navigation