Skip to main content

Advertisement

Log in

Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review

  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present review article aims to summarize the microbiological and technological background of the dark fermentation processes for hydrogen generation, emphasising on the exploitation of biomass and wastes as potential feedstocks. The basic principles, the microbiology and the current technology of the processes are outlined. Subsequently, the use of different types of biomass and wastes that have so far been tested as feedstocks is analysed focusing on the advantages, possible limitations and future prospects of their exploitation. Moreover, different types of so far suggested pretreatment methods for better utilisation of the feedstocks are presented, pointing out the advantages and disadvantages of each method. Finally, methods for possible further utilisation of the generated by-products are laid out as well as the present status of the real scale applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Nakicenovic, N.: Energy perspectives for Eurasia and the Kioto Protocol. IIASA Interium Report IR-98-67I (1998)

  2. Conte, M., Iacobazzi, A., Ronchetti, M., Vellone, R.: Hydrogen economy for a sustainable development: state-of-the-art and technological perspectives. J. Power Sources 100, 171–187 (2001)

    Article  Google Scholar 

  3. Barnham, K.W.J., Mazzer, M., Clive, B.: Resolving the energy crisis: nuclear or photovoltaics? Nat. Mater. 5, 161–164 (2006)

    Article  Google Scholar 

  4. Momirlan, M., Veziroglu, T.N.: The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int. J. Hydrog. Energy 30, 795–802 (2005)

    Article  Google Scholar 

  5. Marban, G., Valdes-Solis, T.: Towards the hydrogen economy? Int. J. Hydrog. Energy 32, 1625–1637 (2007)

    Article  Google Scholar 

  6. Kapdan, I.K., Kargi, F.: Bio-hydrogen production from waste materials. Enzym. Microb. Technol. 38, 569–582 (2006)

    Article  Google Scholar 

  7. Nandi, R., Sengupta, S.: Microbial production of hydrogen: an overview. Crit. Rev. Microbiol. 24, 61–84 (1998)

    Article  Google Scholar 

  8. Thauer, R.K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

    Google Scholar 

  9. Solomon, B.O., Zeng, A.R., Biebl, H., Schlieker, H., Posten, C., Deckwer, W.D.: Comparison of the energetic efficiencies of hydrogen and oxychemicals formation in Klebsiella Pneumoniae and Clostridimn butyricum during anaerobic growth on glycerol. J. Biotechnol. 39, 107–117 (1995)

    Article  Google Scholar 

  10. Voordouw, G.: Carbon monoxide cycling by Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 184, 5903–5911 (2002)

    Article  Google Scholar 

  11. Sawers, G.: Formate and its role in hydrogen production in Escherichia coli. Biochem. Soc. Trans. 33, 42–46 (1994)

    Google Scholar 

  12. Uyeda, K., Rabinowitz, J.R.: Pyruvate ferredoxin oxidoreductase. IV. Studies on the reaction mechanism. J. Biol. Chem. 246, 3120–3125 (1971)

    Google Scholar 

  13. Buchanan, B.B. Ferredoxin-linked carboxylation reactions. In: The enzymes vol.6, pp. 193-216, Academic Press Inc., New York (1972)

  14. Vetter Jr., H., Knappe, J.: Flavodoxin and ferredoxin of Escherichia coli. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie 352, 433–446 (1971)

    Google Scholar 

  15. Bothe, H., Falkenberg, B., Nolteernsting, U.: Properties and functions of the pyruvate ferredoxin oxidoreductase from the blue-green alga Anabaena cylindric. Arch. Microbiol. 96, 291–304 (1974)

    Article  Google Scholar 

  16. Jungermann, K., Thauer, R.K., Leimenstoll, G., Decker, K.: Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochim. Biophys. Acta 305, 268–280 (1973)

    Article  Google Scholar 

  17. Daesh, G., Mortenson, L.E.: Sucrose catabolism in Clostridium pasteurianum and its relation to N2 fixation. J. Bacteriol. 96, 346–351 (1967)

    Google Scholar 

  18. Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechte, M., Umbarger, H.E.: Escherichia coli and Salmonella typhimurium. Cellular and Molecular Biology, vols. 1 & 2. American Society for Microbiology, Washington, DC (1987)

  19. Knappe, J., Blaschkowski, H.P., Grobner, P., Schmitt, T.: Pyruvate formate lyase of Escherichia coli: the acetyl enzyme intermediate. Eur. J. Biochem. 50, 253–263 (1974)

    Article  Google Scholar 

  20. Nandi, R., Sengupta, S.: Involvement of anaerobic reductase in the spontaneous lysis of formate by immobilized cells of E. coli. Enzym. Microb. Technol. 19, 20–25 (1996)

    Article  Google Scholar 

  21. Gottschalk, G.: Bacterial fermentations. In: Bacterial Metabolism, pp. 237–239, Springer, New York (1986)

  22. Wood, N.P., Jungermann, K.A.: Inactivation of the pyruvate formate lyase reaction of Clostridium butiricum. FEBS Lett. 27, 49–52 (1972)

    Article  Google Scholar 

  23. Kirkpatrick, C., Maurer, M.L., Oyelakin, N.E., Yoncheva, Y.N., Mauer, R., Slonczewski, J.L.: Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J. Bacteriol. 183, 6466–6477 (2001)

    Article  Google Scholar 

  24. Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrog. Energy 34(2), 799–811 (2009)

    Article  Google Scholar 

  25. Valdez-Vazquez, I., Rios-Leal, E., Esparza-Garcia, F., Cecchi, F., Poggi-Varaldo, H.M.: Semi-continuous solid substrate anaerobic reactors for H2 production from organic waste: Mesophilic versus thermophilic regime. Int. J. Hydrog. Energy 30, 1383–1391 (2005)

    Article  Google Scholar 

  26. Chen, C.C., Lin, C.Y., Lin, M.C.: Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58, 224–228 (2002)

    Article  Google Scholar 

  27. Chang, J.-S., Lee, K.-S., Lin, P.-J.: Biohydrogen production with fixed-bed bioreactors. Int. J. Hydrog. Energy 27, 1167–1174 (2002)

    Article  Google Scholar 

  28. Noike, T., Ko, I.B., Lee, D.Y., Yokoyama, S.: Continuous hydrogen production from organic municipal wastes. In: Proceedings of the 1st NRL International Workshop on Innovative Anaerobic Technology, pp. 53–60 (2003)

  29. Sparling, R., Risbey, D., Poggi-Varaldo, H.M.: Hydrogen production from inhibited anaerobic composters. Int. J. Hydrog. Energy 22, 563–566 (1997)

    Article  Google Scholar 

  30. Noike, T.: Biological hydrogen production of organic wastes—development of the two-phase hydrogen production process. In: International Symposium on Hydrogen and Methane Fermentation of Organic Waste, pp. 31–39 (2002)

  31. Han, S.K., Shin, H.S.: Performance of an innovative two-stage process converting food waste to hydrogen and methane. J. Air Waste Manag. 54, 242–249 (2004)

    Google Scholar 

  32. Koutrouli, E.C., Gavala, H.N., Skiadas, I.V., Lyberatos, G.: Mesophilic biohydrogen production from olive pulp. Proc. Saf. Environ. Prot. 84, 285–289 (2006)

    Article  Google Scholar 

  33. Lin, C.Y., Lay, C.H.: A nutrient formulation for fermentative hydrogen production using anaerobic sewage sludge microflora. Int. J. Hydrog. Energy 30, 285–292 (2005)

    Article  Google Scholar 

  34. Ueno, Y., Kawai, T., Sato, S., Otsuka, S., Morimoto, M.: Biological production of hydrogen from cellulose by natural anaerobic microflora. J. Ferment. Bioeng. 79, 395–397 (1995)

    Article  Google Scholar 

  35. Lay, J.-J., Fan, K.-S., Chang, I.J., Ku, C.-H.: Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int. J. Hydrog. Energy 28, 1361–1367 (2003)

    Article  Google Scholar 

  36. Morimoto, M., Atsuko, M., Atif, A.A.Y., Ngan, M.A., Fakhrul-Razi, A., Iyuke, S.E., Bakir, A.M.: Biological production of hydrogen from glucose by natural anaerobic microflora. Int. J. Hydrog. Energy 29, 709–713 (2004)

    Article  Google Scholar 

  37. Khanal, S.K., Chen, W.-H., Li, L., Sung, S.: Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrog. Energy 29, 1123–1131 (2004)

    Google Scholar 

  38. Van Ginkel, S., Sung, S., Lay, J.-J.: Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726–4730 (2001)

    Article  Google Scholar 

  39. Logan, B.E., Oh, S.-E., Kim, I.S., Van Ginkel, S.: Biological hydrogen production measured in batch anaerobic respirometers. Environ. Sci. Technol. 36, 2530–2535 (2002)

    Article  Google Scholar 

  40. Lay, J.-J., Lee, Y.-J., Noike, T.: Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Res. 33, 2579–2586 (1999)

    Article  Google Scholar 

  41. Noike, T., Mizuno, O.: Hydrogen fermentation of organic municipal wastes. Water Sci. Technol. 42, 155–162 (2000)

    Google Scholar 

  42. Wang, C.C., Chang, C.W., Chu, C.P., Lee, D.J., Chang, B.-V., Liao, C.S., Tay, J.H.: Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res. 37, 2789–2793 (2003)

    Article  Google Scholar 

  43. Antonopoulou, G., Stamatelatou, K., Venetsaneas, N., Kornaros, M., Lyberatos, G.: Biohydrogen and methane production from cheese whey in a two-stage anaerobic process. Ind. Eng. Chem. Res. 47, 5227–5233 (2008)

    Article  Google Scholar 

  44. Shizas, I., Bagley, D.M.: Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. Water Sci. Technol. 52, 139–144 (2005)

    Article  Google Scholar 

  45. Gavala, H.N., Skiadas, I.V., Ahring, B.K.: Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J. Hydrog. Energy 31, 1164–1175 (2006)

    Article  Google Scholar 

  46. Wang, C.-H., Lu, W.-B., Chang, J.-S.: Feasibility study on fermentative conversion of raw and hydrolyzed starch to hydrogen using anaerobic mixed microflora. Int. J. Hydrog. Energy 32, 3849–3859 (2007)

    Article  Google Scholar 

  47. Lin, C.-Y., Cheng, C.-H.: Fermentative hydrogen production from xylose using anaerobic mixed microflora. Int. J. Hydrog. Energy 31, 832–840 (2006)

    Article  Google Scholar 

  48. Mu, Y., Yu, H.-Q., Wang, G.: Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzym. Microb. Technol. 40, 947–953 (2007)

    Article  Google Scholar 

  49. Ntaikou, I., Kourmentza, C., Koutrouli, E., Stamatelatou, K., Zampraka, A., Kornaros, M., Lyberatos, G.: Exploitation of olive oil mill wastewater for combined bio-hydrogen and biopolymers production. Bioresour. Technol. 100, 3724–3730 (2009)

    Article  Google Scholar 

  50. Lee, K.S., Lin, P.J., Fangchiang, K., Chang, J.S.: Continuous hydrogen production by anaerobic mixed microflora using a hollow-fiber microfiltration membrane bioreactor. Int. J. Hydrog. Energy 32, 950–957 (2007)

    Article  Google Scholar 

  51. Chong, M.L., Raha, A.R., Shirai, Y., Hassan, M.A.: Biohydrogen production by Clostridium butyricum EB6 from palm oil mill effluent. Int. J. Hydrog. Energy 34, 764–771 (2009)

    Article  Google Scholar 

  52. Lin, P.-Y., Whang, L.-M., Wu, Y.-R., Ren, W.-J., Hsiao, C.-J., Li, S.-L., Chang, J.-S.: Biological hydrogen production of the genus Clostridium: metabolic study and mathematical model simulation. Int. J. Hydrog. Energy 32, 1728–1735 (2007)

    Article  Google Scholar 

  53. Collet, C., Adler, N., Schwitzguebel, J.P., Peringer, P.: Hydrogen production by Clostridium thermolacticum during continuous fermentation of lactose. Int. J. Hydrog. Energy 29, 1479–1485 (2004)

    Article  Google Scholar 

  54. Jo, H.J., Lee, D.S., Park, D., Park, J.M.: Biological hydrogen production by immobilized cells of Clostridium tyrobutyricum JM1 isolated from food waste treatment process. Bioresour. Technol. 99, 6666–6672 (2008)

    Article  Google Scholar 

  55. Levin, D.B., Islam, R., Cicek, N., Sparling, R.: Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int. J. Hydrog. Energy 31, 1496–1503 (2006)

    Article  Google Scholar 

  56. Evyernie, D., Yamazaki, S., Morimoto, K., Karita, S., Kimura, T., Sakka, K., Ohmiya, K.: Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen producing bacterium. J. Biosci. Bioeng. 89, 596–601 (2000)

    Article  Google Scholar 

  57. Tanisho, S., Ishiwata, W.: Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes. Int. J. Hydrog. Energy 19, 807–812 (1994)

    Article  Google Scholar 

  58. Yokoi, H., Saitsu, A., Uchida, H., Hirose, H., Hayashi, S., Takasaki, W.: Microbial hydrogen production from sweet potato starch residue. J. Biosci. Bioeng. 91, 58–63 (2001)

    Article  Google Scholar 

  59. Kumar, N., Das, D.: Continuous hydrogen production by immobilized Enterobacter cloacae IIT-BT 08 using lignocellulosic materials as solid matrice. Enzym. Microb. Technol. 29, 280–287 (2001)

    Article  Google Scholar 

  60. Kumar, N., Ghosh, A., Das, D.: Redirection of biochemical pathways for the enhancement of H2 production by Enterobacter cloacae. Biotechnol. Lett. 23, 537–541 (2001)

    Article  Google Scholar 

  61. van Niel, E.W.J., Budde, M.A.W., de Haas, G.G., van der Wal, F.J., Claassen, P.A.M., Stams, A.J.M.: Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. Int. J. Hydrog. Energy 27, 1391–1398 (2002)

    Article  Google Scholar 

  62. O-Thong, S., Prasertsan, P., Karakashev, D., Angelidaki, I.: Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int. J. Hydrog. Energy 33, 1204–1214 (2008)

    Article  Google Scholar 

  63. Schroder, C., Selig, M., Schonheit, P.: Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritime: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161, 460–470 (1994)

    Google Scholar 

  64. de Vrije, T., de Haas, G.G., Tan, G.B., Keijsers, E.R.P., Claassen, P.A.M.: Pretreatment of Miscanthus for hydrogen production by Thermotoga elfii. Int J Hydrog. Energy 27, 1381–1390 (2002)

    Article  Google Scholar 

  65. Nguyen, T.-A.D., Han, S.J., Kim, J.P., Kim, M.S., Sim, S.J.: Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour. Technol. 101, S38–S41 (2010)

    Article  Google Scholar 

  66. Nath, K., Das, D.: Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 65, 520–529 (2004)

    Article  Google Scholar 

  67. Gosh, D., Hallenbeck, P.C.: Fermentative hydrogen yields from different sugars by batch cultures of metabolically engineered Escherichia coli DJT135. Int. J. Hydrog. Energy 34, 7979–7982 (2009)

    Article  Google Scholar 

  68. Yoshida, A., Nishimura, T., Kawaguchi, H., Inui, M., Yukawa, H.: Enhanced hydrogen production from glucose using ldh- and frd-inactivated Escherichia coli strains. Appl. Microbiol. Biotechnol. 73, 67–72 (2006)

    Article  Google Scholar 

  69. Maeda, T., Sanchez-Torres, V., Wood, T.K.: Enhanced hydrogen production from glucose by metabolically engineered Escherichia coli. Appl. Microbiol. Biotechnol. 77, 879–890 (2007)

    Article  Google Scholar 

  70. Sauter, M., Bohm, R., Bock, A.: Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol. Microbiol. 6, 1523–1532 (1992)

    Article  Google Scholar 

  71. Lloyd, J.R., Thomas, G.H., Finlay, J.A., Cole, J.A., Macaskie, L.E.: Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high activity strains and effect of process parameters. Biotechnol. Bioeng. 66, 122–130 (1999)

    Article  Google Scholar 

  72. Sanchez-Torres, V., Maeda, T., Wood, T.K.: Protein engineering of the transcriptional activator FhlA to enhance hydrogen production in Escherichia coli. Appl. Microbiol. Biotechnol. 75, 5639–5646 (2009)

    Google Scholar 

  73. Claassen, P.A.M., Lopez Contreras, A.M., Sijtsma, L., Weusthuis, R.A., van Lier, J.B., van Niel, E.W.J., Stams, A.J.M., De Vries, S.S.: Utilisation of biomass for the supply of energy carriers. Appl. Microbiol. Biotechnol. 52, 741–755 (1999)

    Article  Google Scholar 

  74. Hawkes, F.R., Dinsdal, R., Hawkes, D.L., Hussy, I.: Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrog. Energy 27, 1339–1347 (2002)

    Article  Google Scholar 

  75. Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L., Noike, T.: Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 73(1), 59–65 (2000)

    Article  Google Scholar 

  76. Ueno, Y., Haruta, S., Ishii, M., Igarashi, Y.: Characterization of a microorganism isolated from the effluent of hydrogen fermentation by microflora. J. Biosci. Bioeng. 92, 397–400 (2001)

    Article  Google Scholar 

  77. Fang, H.H.P., Liu, H., Zhang, T.: Characterization of a hydrogen-producing granular sludge. Biotechnol. Bioeng. 78, 44–52 (2002)

    Article  Google Scholar 

  78. Fang, H.H.P., Liu, H.: Biohydrogen production from wastewater by granular sludge. In: 1st International Symposium on Green Energy Revolution, Nagaoka, Japan, pp. 31–36 (2004)

  79. Das, D., Veziroglu, T.N.: Hydrogen production by biological processes: a survey of literature. Int. J. Hydrog. Energy 26, 13–28 (2001)

    Article  Google Scholar 

  80. Das, D., Veziroglu, T.N.: Advances in biological hydrogen production processes. Int. J. Hydrog. Energy 33, 6046–6057 (2008)

    Article  Google Scholar 

  81. Bartacek, J., Zabranska, J., Lens, P.N.L.: Developments and constraints in fermentative hydrogen production. Biofuels Bioprod. Biorefin. 1, 201–214 (2007)

    Article  Google Scholar 

  82. Li, C., Fang, H.H.P.: Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37, 1–39 (2007)

    Article  Google Scholar 

  83. Saxena, R.C., Adhikari, D.K., Goyal, H.B.: Biomass-based energy fuel through biochemical routes: A review. Renew. Sustain. Energy Rev. 13, 167–178 (2009)

    Article  Google Scholar 

  84. Helsel, Z.R., Wedin, W.F.: Direct combustion energy from crops and crop residues produced in Iowa. Energy Agric. 1, 317–329 (1981)

    Article  Google Scholar 

  85. Lipinsky, E.S., Kresovich, S.: Sugar crops as a solar energy converter. Experientia 38, 13–18 (1982)

    Article  Google Scholar 

  86. Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L.: Continuous Fermentative Hydrogen Production from a wheat starch co-product by mixed microflora. Biotechnol. Bioeng. 84, 619–626 (2003)

    Article  Google Scholar 

  87. Hussy, I., Hawkes, F.R., Dinsdale, R., Hawkes, D.L.: Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrog. Energy 30, 471–483 (2005)

    Article  Google Scholar 

  88. Arooj, M.-F., Han, S.-K., Kim, S.-H., Kim, D.-H., Shin, H.-S.: Effect of HRT on ASBR converting starch into biological hydrogen. Int. J. Hydrog. Energy 33, 6509–6514 (2008)

    Article  Google Scholar 

  89. Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Angelopoulos, K., Lyberatos, G.: Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour. Technol. 99, 110–119 (2008)

    Article  Google Scholar 

  90. Ntaikou, I., Gavala, H.N., Kornaros, M., Lyberatos, G.: Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int. J. Hydrog. Energy 33, 1153–1163 (2008)

    Google Scholar 

  91. Kyazze, G., Dinsdale, R., Hawkes, F.R., Guwy, A.J., Premier, G.C., Donnison, I.S.: Direct fermentation of fodder maize, chicory fructans and perennial ryegrass to hydrogen using mixed microflora. Bioresour. Technol. 99, 8833–8839 (2008)

    Article  Google Scholar 

  92. Ivanova, G., Rakhely, G., Kovacs, K.L.: Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int. J. Hydrog. Energy 34, 3659–3670 (2009)

    Article  Google Scholar 

  93. Panagiotopoulos, I.A., Bakker, R.R., Budde, M.A.W., de Vrije, T., Claassen, P.A.M., Koukios, E.G.: Fermentative hydrogen production from pretreated biomass: a comparative study. Bioresour. Technol. 100, 6331–6338 (2009)

    Article  Google Scholar 

  94. de Vrije, T., Bakker, R.R., Budde, M.A.W., Lai, M.H., Mars, A.E., Claassen, P.A.M.: Efficient hydrogen production from the lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol. Biofuels. 2, 12 (2009)

  95. Tenenbaum, D.J.: Food vs. fuel diversion of crops could cause more hunger. Environ. Health Perspect. 116, A254 (2008)

    Article  Google Scholar 

  96. Harlander, K.: Food vs. fuel—a turning point for bioethanol? Acta Agron. Hung. 56, 429–433 (2008)

    Article  Google Scholar 

  97. Rajaram, S., Verma, A.: Production and characterization of xylanase from Bacillus thermoalkalophilus growth on agricultural wastes. Appl. Microbiol. Biotechnol. 34, 141–144 (1990)

    Article  Google Scholar 

  98. Lynd, L.R., van Zyl, W.H., McBride, J.E., Laser, M.: Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16, 577–583 (2005)

    Article  Google Scholar 

  99. Fengel, D., Wegener, G.: Wood: Chemistry, Ultrastructure, Reactions. De Gruyter, Berlin (1984)

    Google Scholar 

  100. van Wyk, J.P.H., Mohulatsi, M.: Biodegradation of wastepaper by cellulase from Trichoderma viride. Bioresour. Technol. 86, 21–23 (2003)

    Article  Google Scholar 

  101. Datar, R., Huang, J., Maness, P.-C., Mohagheghi, A., Czernik, S., Chornet, E.: Hydrogen production from the fermentation of corn stover biomass pretreated with a steam-explosion process. Int. J. Hydrog. Energy 32, 932–939 (2007)

    Article  Google Scholar 

  102. Pattra, S., Sangyoka, S., Boonmee, M., Reungsang, A.: Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrog. Energy 33, 5256–5265 (2008)

    Article  Google Scholar 

  103. Chairattanamanokorn, P., Penthamkeerati, P., Reungsang, A., Lo, Y.-C., Lu, W.-B., Chang, J.-S.: Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge. Int. J. Hydrog. Energy 34, 7612–7617 (2009)

    Article  Google Scholar 

  104. Cao, G., Ren, N., Wang, A., Lee, D.-J., Guo, W., Liu, B., Feng, Y., Zhao, Q.: Acid hydrolysis of corn stover for biohydrogen production using Thermoanaerobacterium thermosaccharolyticum W16. Int. J. Hydrog. Energy 34, 7182–7188 (2009)

    Article  Google Scholar 

  105. Ueno, Y., Otsuka, S., Morimoto, M.: Hydrogen production from industrial wastewater by anaerobic microflora in chemostat culture. J. Ferment. Bioeng. 82, 194–197 (1996)

    Article  Google Scholar 

  106. Yu, H., Zhu, Z., Hu, W., Zhang, H.: Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int. J. Hydrog. Energy 27(11–12), 1359–1365 (2002)

    Article  Google Scholar 

  107. Kim, S.-H., Han, S.-K., Shin, H.-S.: Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog. Energy 29, 1607–1616 (2004)

    Article  Google Scholar 

  108. Shin, H.-S., Youn, J.-H., Kim, S.-H.: Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int. J. Hydrog. Energy 29, 1355–1363 (2004)

    Article  Google Scholar 

  109. Ferchichi, M., Crabbe, E., Gil, G.-H., Hintz, W., Almadidy, A.: Influence of initial pH on hydrogen production from cheese whey. J. Biotechnol. 120, 402–409 (2005)

    Article  Google Scholar 

  110. van Ginkel, S.W., Oh, S.-E., Logan, B.E.: Biohydrogen gas production from food processing and domestic wastewaters. Int. J. Hydrog. Energy 30, 1535–1542 (2005)

    Article  Google Scholar 

  111. Yang, P., Zhang, R., McGarvey, J.A., Benemann, J.R.: Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy 32, 4761–4771 (2007)

    Article  Google Scholar 

  112. Venkata Mohan, S., Lalit Babu, V., Sarma, P.N.: Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): effect of organic loading rate. Enzym. Microb. Technol. 41, 506–515 (2007)

    Article  Google Scholar 

  113. Ren, N.Q., Chua, H., Chan, S.Y., Tsang, Y.F., Wang, Y.J., Sin, N.: Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresour. Technol. 98, 1774–1780 (2007)

    Article  Google Scholar 

  114. Davila-Vazquez, G., Alatriste-Mondragon, F., de Leon-Rodriguez, A., Razo-Flores, E.: Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int. J. Hydrog. Energy 33, 4989–4997 (2008)

    Article  Google Scholar 

  115. Koutrouli, H.C., Kalfas, H., Gavala, H.N., Skiadas, I.V., Stamatelatou, K., Lyberatos, G.: Hydrogen and methane production through two-stage mesophilic anaerobic digestion of olive pulp. Bioresour. Technnol. 100(15), 3718–3723 (2009)

    Article  Google Scholar 

  116. Ntaikou, I., Koutros, E., Kornaros, M.: Valorization of wastepaper using the fibrolytic/hydrogen bacterium Ruminococcus albus. Bioresour. Technnol. 100(15), 5928–5933 (2009)

    Article  Google Scholar 

  117. Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., Lyberatos, G.: Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technnol. 100, 3713–3717 (2009)

    Article  Google Scholar 

  118. Yang, P., Zhang, R., McGarvey, J.A., Benemann, J.R.: Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrog. Energy 32(18), 4761–4771 (2007)

    Article  Google Scholar 

  119. Akutsu, Y., Lee, D.-Y., Li, Y.-Y., Noike, T.: Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int. J. Hydrog. Energy 34, 5365–5372 (2009)

    Article  Google Scholar 

  120. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., Nishio, N.: Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci. Bioeng. 100, 260–265 (2005)

    Article  Google Scholar 

  121. Sakai, S., Yagishita, T.: Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. J. Biosci. Bioeng. 98, 340–348 (2007)

    Google Scholar 

  122. Liu, F., Fang, B.: Optimization of bio-hydrogen production from biodiesel wastes by Klebsiella pneumoniae. Biotechnol. J. 2, 374–380 (2007)

    Article  Google Scholar 

  123. Fan, L.T., Lee, Y.H., Beardmore, D.H.: The influence of major structural features of cellulose on rate of enzymatic hydrolysis. Biotechnol. Bioeng. 23, 419–424 (1981)

    Article  Google Scholar 

  124. Zhu, Y., Lee, Y.Y., Elander, R.T.: Optimization of dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl. Biochem. Biotechnol. 124, 1045–1054 (2005)

    Article  Google Scholar 

  125. Draude, K.M., Kurniawan, C.B., Duff, S.T.B.: Effect of oxygen delignification on the rate and extent of enzymatic hydrolysis of lignocellulosic material. Bioresour. Technol. 79, 113–120 (2001)

    Article  Google Scholar 

  126. Kim, T.H., Kim, J.S., Sunwoo, C., Lee, Y.Y.: Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. 90, 39–47 (2003)

    Article  Google Scholar 

  127. Palmowski, L., Muller, J.: Influence of the size reduction of organic waste on their anaerobic digestion. In: II International Symposium on Anaerobic Digestion of Solid Waste, pp. 137–144 (1999)

  128. Gregg, D., Saddler, J.N.: A techno-economic assessment of the pretreatment and fractionation steps of a biomass-to-ethanol process. Appl. Biochem. Biotechnol. 57–58, 711–727 (1996)

    Article  Google Scholar 

  129. Saha, B.C.: Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279–291 (2003)

    Article  Google Scholar 

  130. Ewanick, S.M., Bura, R., Saddler, J.N.: Acid-catalyzed steam pretreatment of lodgepole pine and subsequent enzymatic hydrolysis and fermentation to ethanol. Biotechnol. Bioeng. 98, 737–746 (2007)

    Article  Google Scholar 

  131. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Article  Google Scholar 

  132. Larsson, S., Cassland, P., Jonsson, L.J.: Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl. Environ. Microbiol. 67, 1163–1170 (2001)

    Article  Google Scholar 

  133. Anderson, W.F., Akin, D.E.: Structural and chemical properties of grass lignocelluloses related to conversion for biofuels. J. Ind. Microbiol. Biotechnol. 35, 355–366 (2008)

    Article  Google Scholar 

  134. Winandy, J.E.: Effects of fire retardant treatments after 19 months of exposure at 150°F (66°C). Res. Note FPL-RN-0264. U.S. Department of agriculture, Forest Service, Forest Products Laboratory, Madison, WI, p. 13 (1995)

  135. Yang, B., Wyman, C.E.: Effect of xylan and lignin removal by batch and flow through pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86(1), 88–95 (2004)

    Article  Google Scholar 

  136. Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002)

    Article  Google Scholar 

  137. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005)

    Article  Google Scholar 

  138. Garrote, G., Dominguez, H., Parajo, J.C.: Hydrothermal processing of lignocellulosic materials. Holz. Roh. Werkst. 57, 191–202 (1999)

    Article  Google Scholar 

  139. Zhu, Y., Lee, Y.Y., Elander, R.T.: Dilute-acid pretreatment of corn stover using a high-solids percolation reactor. Appl. Biochem. Biotechnol. 117, 103–114 (2004)

    Article  Google Scholar 

  140. Ramos, L.P.: The chemistry involved in the steam treatment of lignocellulosic materials. Quim. Nova 26, 863–871 (2003)

    Google Scholar 

  141. Widsten, P., Kandelbauer, A.: Adhesion improvement of lignocellulosic products by enzymatic pre-treatment. Biotechnol. Adv. 26, 379–386 (2008)

    Article  Google Scholar 

  142. Mahalingam, P.U., Daniel, T.: Isolation and partial characterization of lignin degrading microorganisms from termite gut. J. Pure Appl. Microbiol. 1, 327–330 (2007)

    Google Scholar 

  143. Kirk, T.K., Farrell, R.L.: Enzymatic combustion: the microbial degradation of lignin. Ann. Rev. Microbiol. 41, 465–505 (1987)

    Article  Google Scholar 

  144. Eriksson, K.-E.L., Blanchette, R.A., Ander, P.: Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, Berlin, Germany (1990)

    Google Scholar 

  145. Keller, F.A., Hamilton, J.E., Nguyen, Q.A.: Microbial pretreatment of biomass—potential for securing severity of thermochemical biomass pretreatment. Appl. Biochem. Biotechnol. 105, 27–41 (2003)

    Article  Google Scholar 

  146. Kuhar, S., Nair, L.M., Kuhad, R.C.: Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can. J. Microbiol. 54, 305–313 (2008)

    Article  Google Scholar 

  147. Fedorak, P.M., Hrudey, S.E.: The effects of phenol and some alkyl phenolics on batch anaerobic methanogenesis. Water Res. 18, 361–367 (1984)

    Article  Google Scholar 

  148. Persson, P., Andersson, J., Gorton, L., Larsson, S., Nilvebrant, N.-O., Jonsson, L.J.: Effect of different forms of alkali treatment on specific fermentation inhibitors and on the fermentability of lignocellulose hydrolysates for production of fuel ethanol. J. Agric. Food Chem. 50, 5318–5325 (2002)

    Article  Google Scholar 

  149. Fox, M.H., Noike, T., Ohki, T.: Alkaline subcritical-water treatment and alkaline heat treatment for the increase in biodegradability of newsprint waste. Water Sci. Technol. 48, 77–84 (2003)

    Google Scholar 

  150. Clark, T.A., Mackie, K.L.: Fermentation inhibitors in wood hydrolysates derived from the softwood Pinus radiata. J. Chem. Technol. Biotechnol. 34, 101–110 (1984)

    Article  Google Scholar 

  151. Buchert, J., Niemela, K., Puls, J., Poutanen, K.: Improvement in the fermentability of steamed hemicellulose hydrolysate by ion exclusion. Process Biochem. Int. 25, 176–180 (1990)

    Google Scholar 

  152. Gong, C.S., Chen, C.S., Chen, L.F.: Pretreatment of sugar cane bagasse hemicellulose hydrolysate for ethanol by yeast. Appl. Biochem. Biotechnol. 39/40, 83–88 (1993)

    Article  Google Scholar 

  153. Larsson, S., Reimann, A., Nilvebrant, N.O., Jonsson, L.J.: Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl. Biochem. Biotechnol. 77, 91–103 (1999)

    Article  Google Scholar 

  154. Jonsson, L.J., Palmqvist, E., Nilvebrant, N.O., Hahn-Hagerdal, B.: Detoxification of wood hydrolysates with laccase and peroxidases from the white-rot fungus Trametes versicolor. Appl. Microbiol. Biotechnol. 49, 691–697 (1998)

    Article  Google Scholar 

  155. Hamelinck, C.N., van Hooijdonk, G., Faaij, A.P.C.: Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term, online version. Biomass Bioenergy 28, 384–408 (2004)

    Article  Google Scholar 

  156. Venkata Mohan, S.: Review: harnessing of biohydrogen from wastewater treatment using mixed fermentative consortia: process evaluation towards optimization. Int. J. Hydrog. Energy 34, 7460–7474 (2009)

    Article  Google Scholar 

  157. Lee, Y.J., Miyahara, T., Noike, T.: Effect of pH on microbial hydrogen fermentation. J. Chem. Tech. Biotechnol. 77, 694–698 (2002)

    Article  Google Scholar 

  158. Mizuno, O., Dinsdale, R., Hawkes, F.R., Hawkes, D.L., Noike, T.: Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour. Technol. 73, 59–65 (2000)

    Article  Google Scholar 

  159. Kraemer, J.T., Bagley, D.M.: Continuous fermentative hydrogen production using a two-phase reactor system with recycle. Environ. Sci. Technol. 39, 3819–3825 (2005)

    Article  Google Scholar 

  160. Wang, J., Wan, W.: Kinetic models for fermentative hydrogen production: a review. Int. J. Hydrog. Energy 34, 1123–3313 (2009)

    Article  Google Scholar 

  161. Aceves-Lara, C.A., Latrille, E., Bernet, N., Buffiere, P., Steyer, J.P.: A pseudo-stoichiometric dynamic model of anaerobic hydrogen production from molasses. Water Res. 42, 2539–2550 (2008)

    Article  Google Scholar 

  162. Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H., Vavilin, V.A.: Anaerobic Digestion Model No. 1. IWA Publishing, UK (2002)

    Google Scholar 

  163. Peiris, B.R.H., Rathnasiri, P.G., Johansen, J.E., Kuhn, A., Bakke, R.: ADM1 simulations of hydrogen production. Water Sci. Technol. 53, 129–137 (2006)

    Google Scholar 

  164. Penumathsa, B.K.V., Premier, G.C., Kyazze, G., Dinsdale, R., Guwy, A.J., Esteves, S., Rodriguez, J.: ADM1 can be applied to continuous bio-hydrogen production using a variable stoichiometry approach. Water Res. 42, 4379–4385 (2008)

    Article  Google Scholar 

  165. Ntaikou, I., Gavala, H.N., Lyberatos, G.: Modeling of fermentative hydrogen production from the bacterium Ruminococcus albus: definition of metabolism and kinetics during growth on glucose. Int. J. Hydrog. Energy 34, 3697–3709 (2009)

    Article  Google Scholar 

  166. Hallenbeck, P.C., Ghosh, D.: Review: advances in fermentative biohydrogen production: the way forward? Trends Biotechnol. 27, 287–297 (2009)

    Article  Google Scholar 

  167. Zhang, J.J., Li, X.Y., Oh, S.-E., Logan, B.E.: Physical and hydrodynamic properties of flocs produced during biological hydrogen production. Biotechnol. Bioeng. 88, 854–860 (2004)

    Article  Google Scholar 

  168. Kim, M.S.: An integrated system for the biological hydrogen production from organic wastes and waste-waters. In: International Symposium on Hydrogen and Methane Fermentation of Organic Waste, 11–18 (2002)

  169. Kim, O., Kim, Y.H., Ryu, J.Y., Song, B.K., Kim, I.H., Yeom, S.H.: Immobilization methods for continuous hydrogen gas production biofilm formation versus granulation. Process Biochem. 40, 1331–1337 (2005)

    Article  Google Scholar 

  170. Lin, C.Y., Chan, R.C.: Hydrogen production during the anaerobic acidogenic conversion of glucose. J. Chem. Tech. Biotechnol. 74, 498–500 (1999)

    Article  Google Scholar 

  171. Chang, F.-Y., Lin, C.-Y.: Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int. J. Hydrog. Energy 29, 33–39 (2004)

    Article  Google Scholar 

  172. Li, C., Zhang, T., Fang, H.H.P.: Fermentative hydrogen production in packed-bed and packaging-free upflow reactors. Water Sci. Technol. 54, 95–103 (2006)

    Google Scholar 

  173. Cheong, D.-Y., Hansen, C.L., Stevens, D.K.: Production of biohydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Biotechnol. Bioeng. 96, 421–432 (2007)

    Article  Google Scholar 

  174. Zhang, Z.-P., Tay, J.-H., Show, K.-Y., Yan, R., Liang, D.T., Lee, D.-J., Jiang, W.-J.: Biohydrogen production in a granular activated carbon anaerobic fluidized bed reactor. Int. J. Hydrog. Energy 32, 185–191 (2007)

    Article  Google Scholar 

  175. Wu, K.-J., Chang, C.-F., Chang, J.-S.: Simultaneous production of biohydrogen and bioethanol with fluidized-bed and pack-bed bioreactors containing immobilized anaerobic sludge. Process Biochem. 42, 1165–1171 (2007)

    Article  Google Scholar 

  176. Lee, K.-S., Lo, Y.-C., Lin, P.-J., Chang, J.-S.: Improving biohydrogen production in a carrier-induced granular sludge bed by altering physical configuration and agitation pattern of the bioreactor. Int J. Hydrog. Energy 31, 1648–1657 (2006)

    Article  Google Scholar 

  177. Ghosh, S., Ombregt, J.P., Pipyn, P.: Methane production from industrial wastes by two phase anaerobic digestion. Water Res. 19, 1083–1088 (1985)

    Article  Google Scholar 

  178. Liu, J., Bukutin, V.E., Tsygankov, A.A.: Light energy conversion into H2 by Anabaena variabilis mutant PK84 dense culture exposed in nitrogen limitations. Int J. Hydrog. Energy 31, 1591–1596 (2006)

    Article  Google Scholar 

  179. Ueno, Y., Fukui, H., Goto, M.: Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environ. Sci. Technol. 41, 1413–1419 (2007)

    Article  Google Scholar 

  180. Ting, C.H., Lee, D.J.: Production of hydrogen and methane from wastewater sludge using anaerobic fermentation. Int J. Hydrog. Energy 32, 677–682 (2007)

    Article  Google Scholar 

  181. Ueno, Y., Tatara, M., Fukui, H., Makiuchi, T., Goto, M., Sode, K.: Production of hydrogen and methane from organic solid wastes by phase-separation of anaerobic process. Bioresour. Technol. 98, 1861–1865 (2007)

    Article  Google Scholar 

  182. Nath, K., Muthukumar, M., Kumar, A., Das, D.: Kinetics of two stage fermentation process for the production of hydrogen. Int J. Hydrog. Energy 33, 1195–1203 (2008)

    Article  Google Scholar 

  183. Chen, C.-Y., Saratale, G.D., Lee, C.-M., Chen, P.-C., Chang, J.-S.: Phototrophic hydrogen production in photobioreactors coupled with solar-energy-excited optical fibers. Int J. Hydrog. Energy 33, 6886–6895 (2008)

    Article  Google Scholar 

  184. Gest, H., Kamen, M.D.: Studies on the metabolism of photosynthetic bacteria – IV. Photochemical production of molecular hydrogen by growing cultures of photosynthetic bacteria. J. Bacteriol. 58, 239–245 (1949)

    Google Scholar 

  185. Sabourin-Provost, G., Hallenbeck, P.C.: High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresour. Technol. 100, 3513–3517 (2009)

    Article  Google Scholar 

  186. Drepper, T., Gross, S., Yakunin, A.F., Hallenbeck, P.C., Masepohl, B., Klipp, W.: Role of GlnB and GlnK in ammonium control of both nitrogenise systems in the phototrophic bacterium Rhodobacter capsulatus. Microbiology 149, 2203–2212 (2003)

    Article  Google Scholar 

  187. Rey, F.E., Heiniger, E.K., Harwood, C.S.: Redirection of metabolism for biological hydrogen production. Appl. Environ. Microbiol. 73, 1665–1671 (2007)

    Article  Google Scholar 

  188. Hoekema, S., Douma, R.D., Janssen, M., Tramper, J., Wijffels, R.H.: Controlling light-use by Rhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnol. Bioeng. 95, 613–626 (2006)

    Article  Google Scholar 

  189. Berlanga, M., Montero, M.T., Hernandez-Borell, J., Guerrero, R.: Rapid spectrofluorometric screening of poly-hydroxyalkanoate-producing bacteria from microbial mats. Int. Microbiol. 9, 95–102 (2006)

    Google Scholar 

  190. Kessler, B., Weusthuis, R., Witholt, B., Eggink, G.: Production of microbial polyesters: fermentation and downstream processes. Adv. Biochem. Eng. 71, 159–182 (2001)

    Google Scholar 

  191. Holmes, P.A., Lim, G.B. Poly-3-hydroxy-butyrate recovery from microbial cells – by digesting non-polymer material with enzyme and/or surfactant Imperial Chem. Ind. Plc (ICI) (1990)

  192. Zinn, M., Witholt, B., Engli, T.: Occurrence, synthesis and medical applications of bacterial polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 53, 5–21 (2001)

    Article  Google Scholar 

  193. Dionisi, D., Carucci, G., Papini, M.P., Riccardi, C., Majone, M., Carrasco, F.: Olive oil mill effluents as a feedstock for production of biodegradable polymers. Water Res. 39, 2076–2084 (2005)

    Article  Google Scholar 

  194. Kellerhals, M.B., Kessler, B., Witholt, B., Tchouboukov, A., Brandl, H.: Renewable long-chain fatty acids for production of biodegradable medioum-chain-length polyhydroxyalkanoates (mcl-PHAs) at laboratory and pilot scales. Macromolecules 33, 4690–4698 (2000)

    Article  Google Scholar 

  195. Ntaikou, I., Peroni, C.V., Kourmentza, C., Stoller, M., Iliena, V.I., Chianese, A., Chiellini, E., Lyberatos, G.: Production of poly-hydroxy-alkanoates (PHAs) from 3-phase oline oil mill wastewater at a two stage system of semi-pilot scale. In: 3rd International Conference on Engineering for Waste and Biomass Valorisation, Beijing, China (2010)

  196. Ren, N., Li, J., Li, B., Wang, Y., Liu, S.: Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system. Int J. Hydrog. Energy 31, 2147–2157 (2006)

    Article  Google Scholar 

  197. Vatsala, T.M., Raj, S.M., Manimaran, A.: A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. Int J. Hydrog. Energy 33, 5404–5415 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lyberatos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ntaikou, I., Antonopoulou, G. & Lyberatos, G. Biohydrogen Production from Biomass and Wastes via Dark Fermentation: A Review. Waste Biomass Valor 1, 21–39 (2010). https://doi.org/10.1007/s12649-009-9001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-009-9001-2

Keywords

Navigation