Skip to main content

Advertisement

Log in

Biodiesel Production from High FFA Degummed Rice Bran Oil by a Two-Step Process Using Ethanol/Methanol and a Green Catalyst

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Degummed rice bran oil (DRBO) is a low cost raw material considered an excellent alternative to reduce the cost of biodiesel production. The aim of this study was to optimize the esterification process of DRBO. In the first stage, using 100 % of ethanol, nontoxic alcohol obtained from renewable source and ferric sulphate (Fe2(SO4)3) as environmentally friendly catalyst adjusting DRBO for the transesterification process in the second step. The raw material had free fatty acids (FFAs) content reduced from 21.8 to 3.0 %, by ethanol esterification reaching 85.8 % conversion of FFA to fatty acid ethyl esters (FAEE), when the molar ratio ethanol:DRBO was 8:1, 3 % of Fe2(SO4)3 by weight and 3 h of reaction time at the reflux temperature of ethanol. In the second step of the reaction by transesterification, potassium hydroxide (KOH) was used as catalyst in a range from 1.0 to 1.75 % by weight of the esterified oil, the molar ratio methanol:oil (6:1), magnetic stirring of 450 rpm and temperature of 60 °C in 1 h of reaction time. After the two steps reaction, the maximum conversion achieved was 96.6 % of the mixture of FAEE and fatty acid methyl esters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Atadashi, I.M., Aroua, M.K., Aziz, A.R.A., Sulaiman, N.M.N.: Production of biodiesel using high free fatty acid feedstocks. Renew. Sustain. Energy Rev. (2012). doi:10.1016/j.rser.2012.02.063

    Google Scholar 

  2. Solomon, B.D.: Biofuels and sustainability. Ann. N. Y. Acad. Sci. (2010). doi:10.1111/j.1749-6632.2009.05279.x

    Google Scholar 

  3. Vasudevan, P.T., Fu, B.: Environmentally sustainable biofuels: advances in biodiesel research. Waste Biomass Valoriz. (2010). doi:10.1007/s12649-009-9002-1

    Google Scholar 

  4. Ministry of Mines and Energy. Monthly bulletin of renewable fuels. http://www.mme.gov.br. Accessed 29 May 2014

  5. Marx, S., Venter, R.: Evaluation of waste process grease as feedstock for biodiesel production. Waste Biomass Valoriz. (2014). doi:10.1007/s12649-013-9218-y

    Google Scholar 

  6. National Supply Company. Brazilian harvest: grains, ninth survey. http://www.NSC.gov.br. Accessed 2 May 2014

  7. Zhou, Z., Robards, K., Helliwell, S., Blanchard, C.: Composition and functional properties of rice. Int. J. Food Sci. Technol. (2002). doi:10.1046/j.1365-2621.2002.00625.x

    Google Scholar 

  8. Einloft, S., Magalhães, T.O., Donato, A., Dullius, J., Ligabue, R.: Biodiesel from rice bran oil: transesterification by tin compounds. Energy Fuels (2008). doi:10.1021/ef700510a

    Google Scholar 

  9. Lin, L., Ying, D., Chaitep, S., Vittayapadung, S.: Biodiesel production from crude rice bran oil and properties as fuel. Appl. Energy (2009). doi:10.1016/j.apenergy.2008.06.002

    Google Scholar 

  10. Zullaikah, S., Chao-Chin, L., Vali, S.R., Yi-Hsu, J.: A two-step acid-catalyzed process for the production of biodiesel from rice bran oil. Bioresour. Technol. (2005). doi:10.1016/j.biortech.2005.01.028

    Google Scholar 

  11. Brazilian National Agency of Petroleum, Natural Gas and Biofuels. http://nxt.anp.gov.br. Accessed 28 May 2014

  12. Rathmann, R., Szklo, A., Schaeffer, R.: Targets and results of the Brazilian biodiesel incentive program—has it reached the promised land? Appl. Energy (2012). doi:10.1016/j.apenergy.2011.11.021

    Google Scholar 

  13. Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S.: Comparison of two different processes to synthesize biodiesel by waste cooking oil. J. Mol. Catal. A Chem. (2006). doi:10.1016/j.molcata.2006.02.047

    Google Scholar 

  14. Gan, S., Ng, H.K., Ooi, C.W., Motala, N.O., Ismail, M.A.F.: Ferric sulphate catalysed esterification of free fatty acids in waste cooking oil. Bioresour. Technol. (2010). doi:10.1016/j.biortech.2010.04.028

    Google Scholar 

  15. Montefrio, M.J., Xinwen, T., Obbard, J.P.: Recovery and pre-treatment of fats, oil and grease from grease interceptors for biodiesel production. Appl. Energy (2010). doi:10.1016/j.apenergy.2010.04.011

    Google Scholar 

  16. Balat, M., Balat, H.: Progress in biodiesel processing. Appl. Energy (2010). doi:10.1016/j.apenergy.2010.01.012

    Google Scholar 

  17. Issariyakul, T., Kulkarni, M.G., Dalai, A.K., Bakhshi, N.N.: Production of biodiesel from waste fryer grease using mixed methanol/ethanol system. Fuel Process. Technol. (2007). doi:10.1016/j.fuproc.2006.04.007

    Google Scholar 

  18. Furlan, P.Y., Wetzel, P., Johnson, S., Wedin, J., Och, A.: Investigating the oxidation of biodiesel from used vegetable oil by FTIR spectroscopy: used vegetable oil biodiesel oxidation study by FTIR. Spectrosc. Lett. (2010). doi:10.1080/00387010.2010.510708

    Google Scholar 

  19. Lerma-García, M.J., Ramis-Ramos, G., Herrero-Martínez, J.M., Simó-Alfonso, E.F.: Authentication of extra virgin olive oils by Fourier-transform infrared spectroscopy. Food Chem. (2010). doi:10.1016/j.foodchem.2009.04.092

    Google Scholar 

  20. EN 14103:2003: Fat and oil derivatives—fatty acid methyl esters (FAME)—determination of ester and linolenic acid methyl ester contents, European Committee for Standardization (2003)

  21. AOCS:1995: Official methods and recommended practices of the American Oil Chemists’ Society, Cd 3d-63, 5a Ed. Champaign (1995)

  22. Wang, Y., Ou, S., Liu, P., Zhang, Z.: Preparation of biodiesel from waste cooking oil via two-step catalyzed process. Energy Convers. Manag. (2007). doi:10.1016/j.enconman.2006.04.016

    Google Scholar 

  23. Rukunudin, I.H., White, P.J., Bern, C.J., Bailey, T.B.: A modified method for determining free fatty acids from small soybean oil sample sizes. J. Am. Oil Chem. Soc. 75, 563–568 (1998)

    Article  Google Scholar 

  24. Cheng, C.W., Abdulla, R., Sridhar, R.R., Ravindra, P.: Determination of external mass transfer model for hydrolysis of Jatropha oil using immobilized lipase in recirculated packed-bed reactor. Adv. Chem. Eng. Sci. (2011). doi:10.4236/aces.2011.14040

    Google Scholar 

  25. Patil, P., Deng, S., Rhodes, J.I., Lammers, P.J.: Conversion of waste cooking oil to biodiesel using ferric sulfate and supercritical methanol processes. Fuel (2010). doi:10.1016/j.fuel.2009.05.024

    Google Scholar 

  26. Nakpong, P., Wootthikanokkhan, S.: Roselle (Hibiscus sabdariffa L.) oil as an alternative feedstock for biodiesel production in Thailand. Fuel (2010). doi:10.1016/j.fuel.2009.11.040

  27. Berrios, M., Martín, M.A., Chica, A.F., Martín, A.: Purification of biodiesel from used cooking oils. Appl. Energy (2011). doi:10.1016/j.apenergy.2011.04.060

    Google Scholar 

  28. Predojevic, Z.J.: The production of biodiesel from waste frying oils: a comparison of different purification. Fuel (2008). doi:10.1016/j.fuel.2008.07.003

    Google Scholar 

  29. Ouachab, N., Tsoutsos, T.: Study of the acid pretreatment and biodiesel production from olive pomace oil. J. Chem. Technol. Biotechnol. (2013). doi:10.1002/jctb.3940

    Google Scholar 

  30. Ismail, A.A., van de Voort, F.R., Sedman, J.: Rapid quantitative determination of free fatty acids in fats and oils by FTIR spectroscopy. J. Am. Oil Chem. Soc. 70, 335–341 (1993)

    Article  Google Scholar 

  31. Ozgul-Yucel, S., Proctor, A.: Rice bran FFA determination by diffuse reflectance IR Spectroscopy. J. Am. Oil Chem. Soc. 81, 221–224 (2004)

    Article  Google Scholar 

  32. Liu, Y., Lotero, E., Goodwin Jr, J.G.: Effect of water on sulfuric acid catalyzed esterification. J. Mol. Catal. A Chem. (2006). doi:10.1016/j.molcata.2005.09.049

    Google Scholar 

  33. Oliveira, J.F.G., Lucena, I.L., Saboya, R.M.A., Rodrigues, M.L., Torres, A.E.B., Fernandes, F.A.N., Cavalcante, C.L.J., Parente, E.J.S.J.: Biodiesel production from waste coconut oil by esterification with ethanol: the effect of water removal by adsorption. Renew. Energy (2010). doi:10.1016/j.renene.2010.03.035

    Google Scholar 

  34. Sherbiny, S.A.E., Refaat, A.A., Sheltawy, S.T.E.: Production of biodiesel using the microwave technique. J. Adv. Res. (2010). doi:10.1016/j.jare.2010.07.003

    MATH  Google Scholar 

  35. Wang, C.-X., McCurry, J.: Determing the ester and linoleic acid methyl ester contente to comply with EN 14103. http://www.chem.agilent.com/library/applications/5989-5924en.pdf (2014). Accessed 12 May 2014

  36. Skoog, D.A., Holler, F.J., Crouch, S.R.: Principles of Instrumental Analysis, 6th edn. Thomson Brooks/Cole, Stamford (2007)

    Google Scholar 

  37. Phan, A.N., Phan, T.M.: Biodiesel production from waste cooking oils. Fuel (2008). doi:10.1016/j.fuel.2008.07.008

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by FINEP (Brazilian Funding for Studies and Projects), Ref. 2520/2009, Uruguaiana Rice Producers Union, Fapergs and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeane Dullius.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira, E., dos Santos, L.M., Einloft, S. et al. Biodiesel Production from High FFA Degummed Rice Bran Oil by a Two-Step Process Using Ethanol/Methanol and a Green Catalyst. Waste Biomass Valor 6, 343–351 (2015). https://doi.org/10.1007/s12649-015-9349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9349-4

Keywords

Navigation