Skip to main content
Log in

Impact of Ball-Milling Pretreatment on Pyrolysis Behavior and Kinetics of Crystalline Cellulose

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Effect of ball-milling pretreatment on pyrolysis characteristics of cellulose was studied by thermogravimetric analysis (TGA) at four different heating rates; 5, 10, 20, and 40 K/min. Variation in the thermal stability and activation energy of cellulose with ball-milling were calculated by TGA Kinetics using Kissinger, Kissinger–Akahira–Sunose, Flynn–Wall–Ozawa and Starink model free methods. Results demonstrated that ball-milling reduced the thermal stability and activation energy of cellulose. The original and ball-milled cellulose were thoroughly characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, and Scanning electron microscopy. X-ray diffraction analysis revealed that ball-milling decreased the crystallinity of cellulose from 93 to 51 %. The results suggested that ball-milling pretreatment led to effective disruption of crystalline cellulose to amorphous cellulose. It is, therefore, concluded that the ball-milled cellulose can easily become a useful source of chemicals and energy than crystalline cellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TGA:

Thermogravimetric analysis

KAS:

Kissinger–Akahira–Sunose

FTIR:

Fourier-transform infrared spectroscopy

XRD:

X-ray diffraction

NMR:

Nuclear magnetic resonance spectroscopy

CV:

Calorific values

CC:

Crystalline cellulose

BMC:

Ball-milled cellulose

β :

Heating rates

T max :

Temperature of the peak

Ea :

Activation energy

cm−1 :

Wavenumber

CI:

Crystallinity index

α:

Conversion factor

n :

Reaction order

A :

Pre-exponential factor

R:

Ideal gas constant

References

  1. Mohite, B.V., Patil, S.V.: Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hanseni NCIM 2529. Carbohydr. Polym. 106, 132–141 (2014)

    Article  Google Scholar 

  2. Ceylan, S., Topçu, Y.: Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour. Technol. 156, 182–188 (2014)

    Article  Google Scholar 

  3. El Seoud, O.A., Heinze, T.: Polysaccharides I, pp. 103–149. Springer, New York (2005)

    Book  Google Scholar 

  4. Avolio, R., et al.: A multitechnique approach to assess the effect of ball milling on cellulose. Carbohydr. Polym. 87, 265–273 (2012)

    Article  Google Scholar 

  5. Stefanovic, B., Pirker, K.F., Rosenau, T., Potthast, A.: Effects of tribochemical treatments on the integrity of cellulose. Carbohydr. Polym. 111, 688–699 (2014)

    Article  Google Scholar 

  6. Nasrullah, A., Khan, H., Khan, A.S., Muhammad, N., Man, Z., Khan, F.U., Ullah, Z.: Calligonum polygonoides biomass as a low-cost adsorbent: surface characterization and methylene blue adsorption characteristics. Desalination Water Treat. 1–13 (2015)

  7. Faulon, J.-L., Carlson, G.A., Hatcher, P.G.: A three-dimensional model for lignocellulose from gymnospermous wood. Org. Geochem. 21, 1169–1179 (1994)

    Article  Google Scholar 

  8. Klemm, D., Heublein, B., Fink, H.P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)

    Article  Google Scholar 

  9. Fischmeister, C., Bruneau, C., De, K., Vigier, O., Jérôme, F.: 10 Catalytic conversion of biosourced raw materials: homogeneous catalysis. Biorefin. Biomass. Chem. Fuels 232 (2012)

  10. Geboers, J., Van de Vyver, S., Carpentier, K., Jacobs, P., Sels, B.: Hydrolytic hydrogenation of cellulose with hydrotreated caesium salts of heteropoly acids and Ru/C. Green Chem. 13, 2167–2174 (2011)

    Article  Google Scholar 

  11. Geboers, J., Van de Vyver, S., Carpentier, K., Jacobs, P., Sels, B.: Efficient hydrolytic hydrogenation of cellulose in the presence of Ru-loaded zeolites and trace amounts of mineral acid. Chem. Commun. 47, 5590–5592 (2011)

    Article  Google Scholar 

  12. Braden, D.J., Henao, C.A., Heltzel, J., Maravelias, C.C., Dumesic, J.A.: Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green Chem. 13, 1755–1765 (2011)

    Article  Google Scholar 

  13. Tadesse, H., Luque, R.: Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ. Sci. 4, 3913–3929 (2011)

    Article  Google Scholar 

  14. Muhammad, N., Man, Z., Azmi Bustam Khalil, M., Tan, I., Maitra, S.: Studies on the thermal degradation behavior of ionic liquid regenerated cellulose. Waste Biomass Valor 1, 315–321 (2010)

    Article  Google Scholar 

  15. Muhammad, N., Gao, Y., Khan, M. I., Khan, Z., Rahim, A., Iqbal, F., Khan, A.S., Iqbal, J.: Effect of ionic liquid on thermo-physical properties of bamboo biomass. Wood Sci. Technol. 49, 897–913 (2015)

    Article  Google Scholar 

  16. Weeber, A., Bakker, H.: Amorphization by ball milling. A review. Phys. B Condens. Matter 153, 93–135 (1988)

    Article  Google Scholar 

  17. Maier, G., Zipper, P., Stubicar, M., Schurz, J.: Amorphization of different cellulose samples by ball milling. Cellul. Chem. Technol. 39, 167–177 (2005)

    Google Scholar 

  18. Paes, S.S., et al.: The glass transition and crystallization of ball milled cellulose. Cellulose 17, 693–709 (2010)

    Article  Google Scholar 

  19. Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)

    Article  Google Scholar 

  20. Ozawa, T.: A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn 38, 1881–1886 (1965)

    Article  Google Scholar 

  21. Flynn, J.H., Wall, L.A.: A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B Polym. Lett. 4, 323–328 (1966)

    Article  Google Scholar 

  22. Friedman, H.L.: Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6, 183 (1964)

    Article  Google Scholar 

  23. Starink, M.J.: The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta 404, 163–176 (2003)

    Article  Google Scholar 

  24. Abdellaoui, M., Gaffet, E.: The physics of mechanical alloying in a planetary ball mill: mathematical treatment. Acta Metall. Mater. 43, 1087–1098 (1995)

    Article  Google Scholar 

  25. Huang, H., Dallimore, M., Pan, J., McCormick, P.: An investigation of the effect of powder on the impact characteristics between a ball and a plate using free falling experiments. Mater. Sci. Eng., A 241, 38–47 (1998)

    Article  Google Scholar 

  26. Iasonna, A., Magini, M.: Power measurements during mechanical milling. An experimental way to investigate the energy transfer phenomena. Acta Mater. 44, 1109–1117 (1996)

    Article  Google Scholar 

  27. Magini, M., Colella, C., Iasonna, A., Padella, F.: Power measurements during mechanical milling—II. The case of “single path cumulative” solid state reaction. Acta Mater. 46, 2841–2850 (1998)

    Article  Google Scholar 

  28. Magini, M., Iasonna, A., Padella, F.: Ball milling: an experimental support to the energy transfer evaluated by the collision model. Scr. Mater. 34, 13–19 (1996)

    Article  Google Scholar 

  29. Magini, M., Iasonna, A.: Energy transfer in mechanical alloying (overview). Mater. Trans., JIM 36, 123–133 (1995)

    Article  Google Scholar 

  30. Peng, H., Li, H., Luo, H., Xu, J.: A novel combined pretreatment of ball milling and microwave irradiation for enhancing enzymatic hydrolysis of microcrystalline cellulose. Bioresour. Technol. 130, 81–87 (2013)

    Article  Google Scholar 

  31. Kataoka, Y., Kondo, T.: FT-IR microscopic analysis of changing cellulose crystalline structure during wood cell wall formation. Macromolecules 31, 760–764 (1998)

    Article  Google Scholar 

  32. Gierlinger, N., Schwanninger, M.: Chemical imaging of poplar wood cell walls by confocal Raman microscopy. Plant Physiol. 140, 1246–1254 (2006)

    Article  Google Scholar 

  33. Azubuike, C.P., Odulaja, J.O., Okhamafe, A.O.: Physicotechnical, spectroscopic and thermogravimetric properties of powdered cellulose and microcrystalline cellulose derived from groundnut shells. J. Excip. Food Chem. 3, 106–115 (2012)

    Google Scholar 

  34. Yildiz, S., Gümüşkaya, E.: The effects of thermal modification on crystalline structure of cellulose in soft and hardwood. Build. Environ. 42, 62–67 (2007)

    Article  Google Scholar 

  35. Ago, M., Endo, T., Hirotsu, T.: Crystalline transformation of native cellulose from cellulose I to cellulose ID polymorph by a ball-milling method with a specific amount of water. Cellulose 11, 163–167 (2004)

    Article  Google Scholar 

  36. Zhang, W., Liang, M., Lu, C.: Morphological and structural development of hardwood cellulose during mechanochemical pretreatment in solid state through pan-milling. Cellulose 14, 447–456 (2007)

    Article  Google Scholar 

  37. Khan, A.S., Man, Z., Bustam Khalil, M.A., Kait, C.F., Maulud, A.S.: Applied mechanics and materials. (Trans Tech Publ, 2014), 625, 353–356

  38. Keshk, S.M.: Effect of different alkaline solutions on crystalline structure of cellulose at different temperatures. Carbohydr. Polym. 115, 658–662 (2015)

    Article  Google Scholar 

  39. Wang, Y., Zhao, Y., Deng, Y.: Effect of enzymatic treatment on cotton fiber dissolution in NaOH/urea solution at cold temperature. Carbohydr. Polym. 72, 178–184 (2008)

    Article  Google Scholar 

  40. Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Research cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 3 (2010)

  41. Avella, M., et al.: Effect of compatibilization on thermal degradation kinetics of HDPE-based composites containing cellulose reinforcements. J. Therm. Anal. Calorim. 102, 975–982 (2010)

    Article  Google Scholar 

  42. Caballero, J., Front, R., Marcilla, A., Conesa, J.: Characterization of sewage sludges by primary and secondary pyrolysis. J. Anal. Appl. Pyrolysis 40, 433–450 (1997)

    Article  Google Scholar 

  43. Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D.: Pyrolysis behavior and kinetics of biomass derived materials. J. Anal. Appl. Pyrolysis 62, 331–349 (2002)

    Article  Google Scholar 

  44. Kim, S.-S., Agblevor, F.A.: Pyrolysis characteristics and kinetics of chicken litter. Waste Manag 27, 135–140 (2007)

    Article  Google Scholar 

  45. Wang, G., Li, W., Li, B., Chen, H.: TG study on pyrolysis of biomass and its three components under syngas. Fuel 87, 552–558 (2008)

    Article  Google Scholar 

  46. Gu, X., et al.: Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. J. Anal. Appl. Pyrolysis 106, 177–186 (2014)

    Article  Google Scholar 

  47. Nasrullah, A., Khan, H., Khan, A.S., Man, Z., Muhammad, N., Khan, M.I., Abd El-Salam, N.M.: Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution. Sci. World J. 1–12 (2015)

  48. Broido, A., Weinstein, M.: Thermogravimetric analysis of ammonia-swelled cellulose. Combust. Sci. Technol. 1, 279–285 (1970)

    Article  Google Scholar 

  49. Ouajai, S., Shanks, R.: Composition, structure and thermal degradation of hemp cellulose after chemical treatments. Polym. Degrad. Stab. 89, 327–335 (2005)

    Article  Google Scholar 

  50. Bradbury, A.G., Sakai, Y., Shafizadeh, F.: A kinetic model for pyrolysis of cellulose. J. Appl. Polym. Sci. 23, 3271–3280 (1979)

    Article  Google Scholar 

  51. Antal, M.J.J., Varhegyi, G.: Cellulose pyrolysis kinetics: the current state of knowledge. Ind. Eng. Chem. Res. 34, 703–717 (1995)

    Article  Google Scholar 

  52. Yao, F., Wu, Q., Lei, Y., Guo, W., Xu, Y.: Thermal decomposition kinetics of natural fibers: activation energy with dynamic thermogravimetric analysis. Polym. Degrad. Stab. 93, 90–98 (2008)

    Article  Google Scholar 

  53. Mamleev, V., Bourbigot, S., Le Bras, M., Yvon, J., Lefebvre, J.: Model-free method for evaluation of activation energies in modulated thermogravimetry and analysis of cellulose decomposition. Chem. Eng. Sci. 61, 1276–1292 (2006)

    Article  Google Scholar 

  54. Banyasz, J.L., Li, S., Lyons-Hart, J., Shafer, K.H.: Gas evolution and the mechanism of cellulose pyrolysis. Fuel 80, 1757–1763 (2001)

    Article  Google Scholar 

  55. Samuelsson, L.N., Moriana, R., Babler, M.U., Ek, M., Engvall, K.: Model-free rate expression for thermal decomposition processes: the case of microcrystalline cellulose pyrolysis. Fuel 143, 438–447 (2015)

    Article  Google Scholar 

  56. Zhao, H., et al.: Effects of crystallinity on dilute acid hydrolysis of cellulose by cellulose ball-milling study. Energy Fuels 20, 807–811 (2006)

    Article  Google Scholar 

  57. Yeh, A.-I., Huang, Y.-C., Chen, S.H.: Effect of particle size on the rate of enzymatic hydrolysis of cellulose. Carbohydr. Polym. 79, 192–199 (2010)

    Article  Google Scholar 

  58. Ribeiro, L.S., Órfão, J.J., Pereira, M.F.R.: Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem. 17, 2973–2980 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Ministry of Higher Education, Malaysia for funding the research work under Exploration Research Grant Scheme (ERGS:0153AB-108) and Centre of Research in Ionic Liquid (CORIL), all the research officers and postgraduate students for helping in all aspects.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Sada Khan or Nawshad Muhammad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The research does not involve any type of animal and human trails. The research does not involve any endangered species of plant.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A.S., Man, Z., Bustam, M.A. et al. Impact of Ball-Milling Pretreatment on Pyrolysis Behavior and Kinetics of Crystalline Cellulose. Waste Biomass Valor 7, 571–581 (2016). https://doi.org/10.1007/s12649-015-9460-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9460-6

Keywords

Navigation