Skip to main content

Advertisement

Log in

Environmental Friendly Fluidized Bed Combustion of Solid Fuels: A Review About Local Scale Modeling of Char Heterogeneous Combustion

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Fluidized bed combustion is currently intensively developed throughout the world to produce energy from several types of solid fuels, while significantly reducing pollutant emissions with respect to conventional combustion units. Accurate models must be formulated at both bed and particle levels to operate efficiently such units, since local phenomena such as particle temperature and combustion rate are crucial aspects for process improvement and control. In this sense, this article proposes a classification of local scale models to represent the evolution of char heterogeneous combustion of any carbonaceous particles.

Methods

Existing models are described and classified based on the characteristics of the governing equations, the thermal behavior of the gas and solid phases and the description of both the burning particle and the surrounding gas, under a heterogeneous or pseudo-continuous assumption. Criteria for choosing one model instead of others are also considered, depending on the case. The so-called Intrinsic Reactivity Models are described in detail for evaluating the pertinence of their simulated results. The use of CFD to build a simulation scheme of the solid combustion process at local scale is also presented and discussed.

Results

A complete description of the solid fuel burning process is given, along with useful information concerning the evolution of different variables, such as particle internal temperature that governs the reaction rate and gas composition.

Conclusions

This comparative analysis gives a strong basis to select the appropriate modeling approach. Finally, recommendations are proposed for model application and future development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

Bi:

Biot number, dimensionless

cp :

Specific heat capacity (J/kg K)

C:

Molar concentration (kmol/m3)

d:

Diameter (m)

D:

Diffusivity (m2/s)

e:

Particle emissivity

Ea :

Activation energy (J/kmol)

h:

Enthalpy (J)

hb,s :

Heat transfer coefficient (particle in bed) (W/m2 K)

hg,s :

Heat transfer coefficient (particle in gas) (W/m2 K)

is :

Solid component j

km :

Mass transfer coefficient between particle and its surrounding (m/s)

n:

Number of chemical reactions

N:

Number of components

Ns :

Number of species

r:

Radius (m)

r:

Distance from particle center (m)

r:

Spherical coordinate

rS :

Particle external radius (m)

R:

Gas law constant (8.315 J/kg mol)

Ri :

Reaction rate of chemical reaction i (kg/m3 s)

S:

Area (m2)

Sv :

Specific surface area (m2/m3)

t:

Time (s)

T:

Temperature (K)

TS :

Temperature at particle surface (K)

v:

Gas velocity (m/s)

v0 :

Superficial gas velocity (m/s)

x:

x-direction

xC :

Conversion degree of solid or carbon

X:

Solid component mass fraction

y:

Axis of cylinder

y :

Species mass fraction

α:

Stoichiometric coefficient

ϒ:

Stoichiometric coefficient

∆H:

Reaction enthalpy (J/kg)

∆T:

Temperature difference (K)

ε:

Porosity

τ:

Particle tortuosity

λ:

Thermal conductivity (W/m K)

ρ:

Density (kg/m3)

σ:

Stephan–Boltzmann constant (5.67 × 10−8 W/m2 K4)

Ω H :

Overall source term due to chemical reaction, for energy

Ω M :

Overall source term due to chemical reaction, for mass

Ψ:

Adjustable parameter in Eq. (13)

∇:

Grade operator

0:

Initial

av:

Available

b:

Bed, bulk

C:

Carbon

eff:

Effective

g:

Gas

H:

Enthalpy

i:

Combustion reaction

j:

Species or component j

m:

Mass

max:

Maximum

p:

Particle

ref:

Reference

s:

External surface of the solid

s:

Solid

0:

Reference

g:

Gas

N S :

Number of species

s:

Solid

AC:

Asymptotic consumption

ANN:

Artificial neural network

CFD:

Computational fluid dynamics

DAE:

Distributed activation energy

DEM:

Discrete element method

FB:

Fluidized bed

FBC:

Fluidized bed combustor

GC:

General case

GC:

Global combustion

HM:

Heavy metal

HSC:

Heterogeneous shrinking core

IR:

Intrinsic reactive

IRGC:

Intrinsic reactivity general case

LES:

Large eddy simulation

LHS:

Left hand side

MLP:

Multi layer perceptron

MSW:

Municipal solid waste

RDF:

Residue derived fuel

RHS:

Right hand side

QSS:

Quasi stationary state

PVC:

Poly vinyl chloride

SIMPLE:

Semi-implicit method for pressure-linked equations

UC:

Uniform conversion

UDF:

User defined function

References

  1. Falcoz, Q., Liu, J., Gauthier, D., Flamant, G., Abanades, S.: Heavy metal vaporization in fluidized bed combustion of solid waste and coal. In: Proceedings of the XIIIth International Conference on Fluid, pp. 559–566 (2010)

  2. Bin, Y., Yang, L., Sliwinski, V., Sharifi, J.: Swithenbank, Dynamic behaviour of sewage sludge incineration in a large-scale bubbling fluidised bed in relation to feeding-rate variations. Fuel 87, 1552–1563 (2008)

    Article  Google Scholar 

  3. Van Caneghem, J., Brems, A., Lievens, P., Block, C., Billen, P., Vermeulen, I., et al.: Fluidized bed waste incinerators: design, operational and environmental issues. Prog. Energy Combust. Sci. 38, 551–582 (2012)

    Article  Google Scholar 

  4. Yang, W.-C.: Handbook of Fluidization and Fluid–Particle Systems. M. Dekker, New York (2003)

    Book  Google Scholar 

  5. Basu, P.: Combustion and Gasification in Fluidized Beds. Taylor and Francis Group, LLC, London (2006)

    Book  Google Scholar 

  6. Smith, I.W.: The combustion rates of coal chars: a review. Symp. Combust. 19, 1045–1065 (1982)

    Article  Google Scholar 

  7. Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P.: The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). J. Hazard. Mater. 151, 96–102 (2008)

    Article  Google Scholar 

  8. Williams, A., Pourkashanian, M., Jones, J.M.: The combustion of coal and some other solid fuels. Proc. Combust. Inst. 28, 2141–2162 (2000)

    Article  Google Scholar 

  9. Manovic, V., Komatina, M., Oka, S.: Modeling the temperature in coal char particle during fluidized bed combustion. Fuel 87, 905–914 (2008)

    Article  Google Scholar 

  10. Smolders, K., Baeyens, J.: Thermal degradation of PMMA in fluidised beds. Waste Manag 24, 849–857 (2004)

    Article  Google Scholar 

  11. Van de Velden, M., Baeyens, J., Boukis, I.: Modeling CFB biomass pyrolysis reactors. Biomass Bioenergy 32, 128–139 (2008)

    Article  Google Scholar 

  12. Van de Velden, M., Baeyens, J., Dougan, B., McMurdo, A.: Investigation of operational parameters for an industrial CFB combustor of coal, biomass and sludge. China Particuol. 5, 247–254 (2007)

    Article  Google Scholar 

  13. Baeyens, J., Van Puyvelde, F.: Fluidized bed incineration of sewage sludge. J. Hazard. Mater. 37, 179–190 (1994)

    Article  Google Scholar 

  14. Vandecasteele, C., Wauters, G., Arickx, S., Jaspers, M., Van Gerven, T.: Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case. Waste Manag 27, 1366–1375 (2007)

    Article  Google Scholar 

  15. Borodulya, V., Dikalenko, V., Palchonok, G., Stanchitis, L.: Fluidized bed combustion of solid organic wastes and low-grade coals: research and modeling. In: Proceedings of the 13th International Conference on FBC, pp. 935–942 (1995)

  16. Hofmann, H.: Progress in modelling of catalytic fixed-bed reactors. Ger. Chem. Eng. 2, 258–267 (1979)

    Google Scholar 

  17. Froment, G.F., Bischoff, K.B.: Chemical Reactor Analysis and Design, 2nd edn. Wiley, New York (1990)

    Google Scholar 

  18. LaNauze, R.: Fundamentals of coal combustion. In: Davidson, J.F., Clift, R., Harrison, D. (eds.) Fluidization, 2nd ed., pp. 631–674. Academic Press, London (1985)

    Google Scholar 

  19. Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14, 2841–2851 (2010)

    Article  Google Scholar 

  20. van de Weerdhof, M. W.: Modeling the Pyrolysis Process Of Biomass Particles. Master’s Thesis, Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands (2010)

  21. Di Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008)

    Article  Google Scholar 

  22. Bridgwater, A.V.: Catalysis in thermal biomass conversion. Appl. Catal. A 116, 5–47 (1994)

    Article  Google Scholar 

  23. Davidson, J., Harrison, D.: Fluidised Particles. Cambridge University Press, New York (1963)

    Google Scholar 

  24. LaFanechere, L., Basu, P., Jestin, L.: Use of an expert system to study the effect of steam parameters on the size and configuration of circulating fluidized bed boilers. J. Eng. Gas Turbines Power 120, 861 (1998)

    Article  Google Scholar 

  25. Mahmoudi, S., Baeyens, J., Seville, J.P.K.: NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenergy 34, 1393–1409 (2010)

    Article  Google Scholar 

  26. Makansi, J.: Fuel type, preparation emerge as critical to FBC design. Power 134, 41–44 (1990)

    Google Scholar 

  27. Makansi, J.: Can fluid-bed take on pc units in the 250- to 400-MW range? Power 137, 45–50 (1993)

    Google Scholar 

  28. Jones, C.: O&M experience underscores maturity of CFB technology. Power 139, 46–55 (1995)

    Google Scholar 

  29. Ménard, Y., Asthana, A., Patisson, F., Sessiecq, P., Ablitzer, D.: Thermodynamic study of heavy metals behaviour during municipal waste incineration. Process Saf. Environ. Prot. 84, 290–296 (2006)

    Article  Google Scholar 

  30. Mazza, G., Falcoz, Q., Gauthier, D., Flamant, G.: A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization. Combust. Flame 156, 2084–2092 (2009)

    Article  Google Scholar 

  31. Mazza, G., Falcoz, Q., Soria, J., Gauthier, D., Flamant, G.: Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization. Combust. Flame 157, 2306–2317 (2010)

    Article  Google Scholar 

  32. Soria, J., Gauthier, D., Falcoz, Q., Flamant, G., Mazza, G.: Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste. J. Hazard. Mater. 248–249, 276–284 (2013)

    Article  Google Scholar 

  33. Moghtaderi, B.: Pyrolysis of char forming solid fuels: a critical review of the mathematical modelling techinques. In: Proceedings of the 5th AOSFST, pp. 55–82 (2001)

  34. Grammelis, P., Basinas, P., Malliopoulou, A., Sakellaropoulos, G.: Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel 88, 195–205 (2009)

    Article  Google Scholar 

  35. Sommariva, S., Maffei, T., Migliavacca, G., Faravelli, T., Ranzi, E.: A predictive multi-step kinetic model of coal devolatilization. Fuel 89, 318–328 (2010)

    Article  Google Scholar 

  36. Cuoci, A., Faravelli, T., Frassoldati, A.: Mathematical modelling of gasification and combustion of solid fuels and wastes. Chem. Eng. Trans. 18, 989–994 (2009)

    Google Scholar 

  37. Arena, U.: Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32, 625–639 (2012)

    Article  Google Scholar 

  38. Lautenberger, C., Fernandez-Pello, C.: A generalized pyrolysis model for combustible solids. In: Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK, pp. 92–114 (2007)

  39. Williams, A., Backreedy, R., Habib, R., Jones, J.M., Pourkashanian, M.: Modelling coal combustion: the current position. Fuel 81, 605–618 (2002)

    Article  Google Scholar 

  40. Solomon, P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A., Deshpande, G.V.: General model of coal devolatilization. Energy Fuels 2, 405–422 (1988)

    Article  Google Scholar 

  41. Niksa, S., Kerstein, A.: FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels 5, 647–665 (1991)

    Article  Google Scholar 

  42. Fletcher, T., Kerstein, A., Pugmire, R.J., Solum, M., Grant, D.M.: A Chemical Percolation Model for Devolatilization: Summary. Bringham Young University (1992)

  43. Pitt, G.: The kinetics of the evolution of volatile products from coal. Fuel 41, 267–274 (1962)

    Google Scholar 

  44. Solomon, P., Hamblen, D.: Finding order in coal pyrolysis kinetics. Prog. Energy Combust. Sci. 9, 323–361 (1983)

    Article  Google Scholar 

  45. Please, C.P., McGuinness, M.J., McElwain, D.L.S.: Approximations to the distributed activation energy model for the pyrolysis of coal. Combust. Flame 133, 107–117 (2003)

    Article  Google Scholar 

  46. Paea, S.: Coal Pyrolysis Distribution. Victoria University of Wellington, Wellington (2008)

    Google Scholar 

  47. Skodras, G., Grammelis, P., Basinas, P., Kakaras, E., Sakellaropoulos, G.: Pyrolysis and combustion characteristics of biomass and waste-derived feedstock. Ind. Eng. Chem. Res. 45, 3791–3799 (2006)

    Article  Google Scholar 

  48. Dvornikov, N.A.: Equilibrium and kinetic modeling of high-pressure pyrolysis and oxidation of hydrocarbons. Combust. Explos. Shock Waves 35, 230–238 (1999)

    Article  Google Scholar 

  49. Basu, P.: Biomass Gasification and Pyrolysis. Practical Design. Elsevier, Burlington (2010)

    Google Scholar 

  50. Yang, H., Yan, R., Liang, D., Chen, H., Zheng, C.: Pyrolysis of palm oil wastes for biofuel production. Asian J. Energy Environ. 7, 315–323 (2006)

    Google Scholar 

  51. Rapagnà, S., Latif, A.: Steam gasification of almond shells in a fluidised bed reactor the influence of temperature and particle size on product yield and distribution. Biomass Bioenergy 12, 281–288 (1997)

    Article  Google Scholar 

  52. Gómez-Barea, A., Arjona, R., Ollero, P.: Pilot-plant gasification of olive stone: a technical assessment. Energy Fuels 19, 598–605 (2005)

    Article  Google Scholar 

  53. Paviet, F., Chazarenc, F., Tazerout, M.: Thermo chemical equilibrium modelling of a biomass gasifying process using ASPEN PLUS. Int. J. Chem. React. Eng. 7, 1–18 (2009)

    Google Scholar 

  54. Mathieu, P., Dubuisson, R.: Performance analysis of a biomass gasifier. Energy Convers. Manag. 43, 1291–1299 (2002)

    Article  Google Scholar 

  55. Mansaray, A.K.G., Al-Taweel, A.M.: Mathematical modeling of a fluidized bed rice husk gasifier: part I—model development. Energy Sources 22, 83–98 (2000)

    Article  Google Scholar 

  56. Mansaray, K., Ghaly, A., Al-Taweel, A., Ugursal, V., Hamdullahpur, F.: Mathematical modeling of a fluidized bed rice husk gasifier: part III—model verification. Energy Sources 22, 281–296 (2000)

    Article  Google Scholar 

  57. Doherty, W., Reynolds, A., Kennedy, D.: The effect of air preheating in a biomass CFB gasifier using ASPEN plus simulation. Biomass Bioenergy 33, 1158–1167 (2009)

    Article  Google Scholar 

  58. Li, X., Grace, J., Watkinson, A., Lim, C., Ergüdenler, A.: Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 80, 195–207 (2001)

    Article  Google Scholar 

  59. de Souza, M.B., Couceiro, L., Barreto, A.G., Quitete, C.P. B.: Neural network based modeling and operational optimization of biomass gasification processes. In: Gasification for Practical Applications, InTech, pp. 297–312 (2012)

  60. Xiao, G., Ni, M., Chi, Y., Jin, B., Xiao, R., Zhong, Z., et al.: Gasification characteristics of MSW and an ANN prediction model. Waste Manag 29, 240–244 (2009)

    Article  Google Scholar 

  61. Guo, B., Li, D., Cheng, C., Lü, Z., Shen, Y.: Simulation of biomass gasification with a hybrid neural network model. Bioresour. Technol. 76, 77–83 (2001)

    Article  Google Scholar 

  62. Singer, S.L.: Gasification and Combustion Modeling for Porous Char Particles. Massachusetts Institute of Technology, Cambridge (2012)

    Google Scholar 

  63. Szekely, J., Evans, J., Sohn, H.Y.: Gas–Solid Reactions. Academic Press, London (1976)

    Google Scholar 

  64. Wicke, E.: Contributions to the combustion mechanism of carbon. Symp. Combust. 5, 245–252 (1955)

    Article  Google Scholar 

  65. Walker, P.L., Rusinko, F., Austin, L.G.: Gas reactions of carbon. Adv. Catal. 11, 133–221 (1959)

    Google Scholar 

  66. Avedesian, M., Davidson, J.: Combustion of carbon particles in a fluidised bed. Trans. Inst. Chem. Eng. 51, 121–131 (1973)

    Google Scholar 

  67. Kunii, D., Levenspiel, O.: Fluidization Engineering. Butterworth Publishers, Stoneham, MA (1991)

    Google Scholar 

  68. Cooper, J., Hallett, W.L.H.: A numerical model for packed-bed combustion of char particles. Chem. Eng. Sci. 55, 4451–4460 (2000)

    Article  Google Scholar 

  69. Sriramulu, S., Sane, S., Agarwal, P., Mathews, T.: Mathematical modelling of fluidized bed combustion. Fuel 75, 1351–1362 (1996)

    Article  Google Scholar 

  70. Dacombe, P., Pourkashanian, M., Williams, A., Yap, A.: Combustion-induced fragmentation behavior of isolated coal particles. Fuel 78, 1847–1857 (1999)

    Article  Google Scholar 

  71. Mermoud, F., Golfier, F., Salvador, S., Van de Steene, L., Dirion, J.L.: Experimental and numerical study of steam gasification of a single charcoal particle. Combust. Flame 145, 59–79 (2006)

    Article  Google Scholar 

  72. Hastaoglu, M.A., Hassam, M.S.: Application of a general gas–solid reaction model to flash pyrolysis of wood in a circulating fluidized bed. Fuel 74, 697–703 (1995)

    Article  Google Scholar 

  73. Hastaoglu, M., Berruti, F.: A gas–solid reaction model for flash wood pyrolysis. Fuel 68, 1408–1415 (1989)

    Article  Google Scholar 

  74. Veras, C.G., Saastamoinen, J., Carvalho, J., Jr., Aho, M.: Overlapping of the devolatilization and char combustion stages in the burning of coal particles. Combust. Flame 116, 567–579 (1999)

    Article  Google Scholar 

  75. Lee, J.: Transient numerical modeling of carbon particle ignition and oxidation. Combust. Flame 101, 387–398 (1995)

    Article  Google Scholar 

  76. Bradley, D., Dixon-Lewis, G., El-din Habik, S., Mushi, E.M.J.: The oxidation of graphite powder in flame reaction zones. Symp. Combust. 20, 931–940 (1985)

    Article  Google Scholar 

  77. Kee, R., Warnatsz, J., Miller, J.: Fortran computer-code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients [CHEMKIN] (1983)

  78. Stull, D., Prophet, H.: JANAF Thermochemical Tables, pp. 1–1139 (1971)

  79. Porteiro, J., Granada, E., Collazo, J., Patiño, D., Morán, J.C.: A model for the combustion of large particles of densified wood. Energy Fuels 21, 3151–3159 (2007)

    Article  Google Scholar 

  80. Thunman, H., Leckner, B., Niklasson, F., Johnsson, F.: Combustion of wood particles—a particle model for Eulerian calculations. Combust. Flame 129, 30–46 (2002)

    Article  Google Scholar 

  81. Peters, B., Bruch, C.: A flexible and stable numerical method for simulating the thermal decomposition of wood particles. Chemosphere 42, 481–490 (2001)

    Article  Google Scholar 

  82. Tabarés, J.L.M., Granada, E., Moran, J., Porteiro, J., Murillo, S., González, L.M.L.: Combustion behavior of spanish lignocellulosic briquettes, energy sources. Energy Sources Part A Recover. Util. Environ. Eff. 28, 501–515 (2006)

    Article  Google Scholar 

  83. Lu, H., Robert, W., Peirce, G., Ripa, B., Baxter, L.L.: Comprehensive study of biomass particle combustion. Energy Fuels 22, 2826–2839 (2008)

    Article  Google Scholar 

  84. Haseli, Y., van Oijen, J.A., de Goey, L.P.H.: A detailed one-dimensional model of combustion of a woody biomass particle. Bioresour. Technol. 102, 9772–9782 (2011)

    Article  Google Scholar 

  85. Manović, V., Grubor, B., Ilić, M.: Sulfur self-retention in ash a grain model approach. Therm. Sci. 6, 29–46 (2002)

    Article  Google Scholar 

  86. Manovic, V., Grubor, B., Loncarevic, D.: Modeling of inherent capture in coal particles during combustion in fluidized bed. Chem. Eng. Sci. 61, 1676–1685 (2006)

    Article  Google Scholar 

  87. Grubor, B., Manovic, V., Oka, S.: An experimental and modeling study of the contribution of coal ash to SO2 capture in fluidized bed combustion. Chem. Eng. J. 96, 157–169 (2003)

    Article  Google Scholar 

  88. Ilić, M., Oka, S., Grubor, B.: Analysis of the dynamic behavior of a burning porous char particle. Therm. Sci. 2, 61–73 (1998)

    Google Scholar 

  89. Ilić, M., Grubor, B., Manović, V.: Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion. J. Serbian Chem. Soc. 68, 137–145 (2003)

    Article  Google Scholar 

  90. Bhatia, S., Perlmutter, D.: A rondom pore model for fluid–solid reactions: 1. isothermal, kinetic control. AIChE J. 26, 379–386 (1980)

    Article  Google Scholar 

  91. Arthur, J.: Reactions between carbon and oxygen. Trans. Faraday Soc. 47, 164–178 (1951)

    Article  Google Scholar 

  92. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis Group, LLC, London (1980)

    MATH  Google Scholar 

  93. Zhou, H., Flamant, G., Gauthier, D.: DEM-LES simulation of coal combustion in a bubbling fluidized bed part II: coal combustion at the particle level. Chem. Eng. Sci. 59, 4205–4215 (2004)

    Article  Google Scholar 

  94. Canò, G., Salatino, P., Scala, F.: A single particle model of the fluidized bed combustion of a char particle with a coherent ash skeleton: application to granulated sewage sludge. Fuel Process. Technol. 88, 577–584 (2007)

    Article  Google Scholar 

  95. Dennis, J.S., Lambert, R.J., Milne, A.J., Scott, S.A., Hayhurst, A.N.: The kinetics of combustion of chars derived from sewage sludge. Fuel 84, 117–126 (2005)

    Article  Google Scholar 

  96. Chen, C., Kojima, T.: Single char particle combustion at moderate temperature: effects of ash. Fuel Process. Technol. 47, 215–232 (1996)

    Article  Google Scholar 

  97. Bhat, A., Ram Bheemarasetti, J., Rajeswara Rao, T.: Kinetics of rice husk char gasification. Energy Convers. Manag. 42, 2061–2069 (2001)

    Article  Google Scholar 

  98. Yasyerli, N., Dogu, T., Dogu, G., Ar, I.: Deactivation model for textural effects of kinetics of gas–solid noncatalytic reactions “char gasification with CO2”. Chem. Eng. Sci. 51, 2523–2528 (1996)

    Article  Google Scholar 

  99. Gómez-Barea, A.: Modelado de los efectos difusionales en la gasificación de partículas de carbonizado de biomasa. University of Seville, Seville (2006)

    Google Scholar 

  100. Gómez-Barea, A., Ollero, P.: An approximate method for solving gas–solid non-catalytic reactions. Chem. Eng. Sci. 61, 3725–3735 (2006)

    Article  Google Scholar 

  101. Wang, Y., Yan, L.: CFD studies on biomass thermochemical conversion. Int. J. Mol. Sci. 9, 1108–1130 (2008)

    Article  Google Scholar 

  102. J. Macphee, M. Sellier, M. Jermy, E. Tadulan, CFD modelling of pulverized coal combustion in a rotary lime kiln. In: Seventh International Conference CFD Seventh International Conference on CFD in the Minerals and Process Industries, pp. 1–6 (2009)

  103. Yin, C., Kær, S., Rosendahl, L., Hvis, S.: Modeling of pulverized coal and biomass co-firing in a 150 KW swirling-stabilized burner and experimental validation. Proc. Int. Conf. Power Eng. 09, 305–310 (2009)

    Google Scholar 

  104. Backreedy, R.I., Habib, R., Jones, J.M., Pourkashanian, M., Williams, A.: An extended coal combustion model. Fuel 78, 1745–1754 (1999)

    Article  Google Scholar 

  105. Backreedy, R.I., Fletcher, L.M., Jones, J.M., Ma, L., Pourkashanian, M., Williams, A.: Co-firing pulverised coal and biomass: a modeling approach. Proc. Combust. Inst. 30, 2955–2964 (2005)

    Article  Google Scholar 

  106. Geng, Y., Che, D.: An extended DEM-CFD model for char combustion in a bubbling fluidized bed combustor of inert sand. Chem. Eng. Sci. 66, 207–219 (2011)

    Article  Google Scholar 

  107. Stopford, P.J.: Recent applications of CFD modelling in the power generation and combustion industries. Appl. Math. Model. 26, 351–374 (2002)

    Article  MATH  Google Scholar 

  108. Pallarés, J., Arauzo, I., Díez, L.I.: Numerical prediction of unburned carbon levels in large pulverized coal utility boilers. Fuel 84, 2364–2371 (2005)

    Article  Google Scholar 

  109. Pallarés, J., Arauzo, I., Williams, A.: Integration of CFD codes and advanced combustion models for quantitative burnout determination. Fuel 86, 2283–2290 (2007)

    Article  Google Scholar 

  110. Gera, D., Mathur, M.P., Freeman, M.C., Robinson, A.: Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler. Energy Fuels 16, 1523–1532 (2002)

    Article  Google Scholar 

  111. Yang, Y.B., Sharifi, V.N., Swithenbank, J., Ma, L., Darvell, L.I., Jones, J.M., et al.: Combustion of a single particle of biomass. Energy Fuels 22, 306–316 (2008)

    Article  Google Scholar 

  112. Mehrabian, R., Zahirovic, S., Scharler, R., Obernberger, I., Kleditzsch, S., Wirtz, S., et al.: A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process. Technol. 95, 96–108 (2012)

    Article  Google Scholar 

  113. ANSYS Inc: ANSYS FLUENT User’ s Guide. ANSYS Inc, Cecil Township (2011)

    Google Scholar 

  114. Bruch, C., Peters, B., Nussbaumer, T.: Modelling wood combustion under fixed bed conditions. Fuel 82, 729–738 (2003)

    Article  Google Scholar 

  115. Li, J., Paul, M.C., Younger, P.L., Watson, I., Hossain, M., Welch, S.: Characterization of biomass combustion at high temperatures based on an upgraded single particle model. Appl. Energy 156, 749–755 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This study was developed in the CONICET (MINCyT)—CNRS Argentine—French collaboration agreement (SYNSOLGAS PROJECT). G. D. Mazza and J. M. Soria are Research Members of CONICET (Argentina). It was supported by the SOLSTICE Laboratory of Excellence of the French “Investments for the future” programme managed by the National Agency for Research under contract ANR-10-LABX-22-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Flamant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazza, G.D., Soria, J.M., Gauthier, D. et al. Environmental Friendly Fluidized Bed Combustion of Solid Fuels: A Review About Local Scale Modeling of Char Heterogeneous Combustion. Waste Biomass Valor 7, 237–266 (2016). https://doi.org/10.1007/s12649-015-9461-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9461-5

Keywords

Navigation