Skip to main content

Advertisement

Log in

Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Several abundant agri-food wastes, including lemon peels, olive leaves, onion solid wastes, red grape pomace, spent filter coffee and wheat bran, were used to test the efficiency of some novel glycerol-based natural eutectic mixtures to extract polyphenolic compounds. Extractions were performed under specified ultrasonication conditions and the eutectic mixtures, tested as 90 % (v/v) aqueous solutions, were glycerol:choline chloride, glycerol:sodium acetate and glycerol:sodium–potassium tartrate:water, with corresponding molar ratios of 3:1, 3:1 and 5:1:4. The latter two mixtures are reported for the first time. Water and 60 % (v/v) aqueous ethanol were also used as control solvents. The results obtained evidenced that glycerol:choline chloride exhibited high efficiency, which was comparable or even surpassed that of aqueous ethanol, but in some instances the same was observed for glycerol:sodium acetate too. In general, glycerol:sodium–potassium tartrate:water displayed lower efficiency in extracting polyphenols. The data also suggested that extracts with high polyphenol concentration may also possess higher antiradical activity and reducing power. The findings of this study were interpreted on the ground of assumptions regarding the polarity of the eutectic mixtures tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AAR :

Antiradical activity (μmol DPPH g−1)

AED:

Acoustic energy density (W L−1)

C TFn :

Total flavonoid concentration (mg RtE L−1)

C TP :

Total polyphenol concentration (mg GAE L−1)

PR :

Reducing power (μmol AAE g−1)

T :

Temperature (°C)

YTFn :

Yield in total flavonoids (mg RtE g−1)

YTP :

Yield in total polyphenols (mg GAE g−1)

AAE:

Ascorbic acid equivalents

ChCl:

Choline chloride

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

EMs:

Eutectic mixtures

GAE:

Gallic acid equivalents

HBA:

Hydrogen bond acceptor

HBD:

Hydrogen bond donor

LMP:

Lemon peels

OLL:

Olive leaves

OSW:

Onion solid wastes

RGP:

Red grape pomace

RtE:

Rutin equivalents

SFC:

Spent filter coffee

TPTZ:

2,4,6-Tripyridyl-s-triazine

WB:

Wheat bran

References

  1. Bhatnagar, A., Sillanpää, M., Witek-Krowiak, A.: Agricultural waste peels as versatile biomass for water purification—a review. Chem. Eng. J. 270, 244–271 (2015)

    Article  Google Scholar 

  2. Vandermeersch, T., Alvarenga, R., Ragaert, P., Dewulf, J.: Environmental sustainability assessment of food waste valorization options. Resour. Conserv. Recycl. 87, 57–64 (2014)

    Article  Google Scholar 

  3. Li, A.-N., Li, S., Zhang, W.-J., Xu, X.-R., Chen, Y.-M., Li, H.-B.: Resources and biological activities of natural polyphenols. Nutrients 6, 6020–6047 (2014)

    Article  Google Scholar 

  4. Galanakis, C.M.: Recovery of high added-value components from food wastes: conventional, emerging technologies and commercialized applications. Trends Food Sci. Technol. 26, 68–87 (2012)

    Article  Google Scholar 

  5. Bergez-Lacoste, M., Thiebaud-Roux, S., De Caro, P., Fabre, J.-F., Gerbaud, V., Mouloungui, Z.: From chemical platform molecules to new biosolvents: design engineering as a substitution methodology. Biofuels Bioprod. Biorefin. 8, 438–451 (2014)

    Article  Google Scholar 

  6. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chem. Commun. 70–71 (2003)

  7. Francisco, M., van den Bruinhorst, A., Kroon, M.C.: Low-transition-temperature mixtures (LTTMs): a new generation of designer solvents. Angew. Chem. Int. Ed. 52, 3074–3085 (2013)

    Article  Google Scholar 

  8. Cui, Q., Peng, X., Yao, X.-H., Wei, Z.-F., Luo, M., Wang, W., Zhao, C.-J., Fu, Y.-J., Zu, Y.-G.: Deep eutectic solvent-based microwave-assisted extraction of genistin, genistein and apigenin from pigeon pea roots. Sep. Purif. Technol. 150, 63–72 (2015)

    Article  Google Scholar 

  9. Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R., Choi, Y.H.: Ionic liquids and deep eutectic solvents in natural products research: mixtures of solids as extraction solvents. J. Nat. Prod. 76, 2162–2173 (2013)

    Article  Google Scholar 

  10. Qi, X.-L., Peng, X., Huang, Y.-Y., Li, L., Wei, Z.-F., Zu, Y.-G., Fu, Y.-J.: Green and efficient extraction of bioactive flavonoids from Equisetum palustre L. by deep eutectic solvents-based negative pressure cavitation method combined with macroporous resin enrichment. Ind. Crops Prod. 70, 142–148 (2015)

    Article  Google Scholar 

  11. Bewley, B.R., Berkaliev, A., Henriksen, H., Ball, D.B., Ott, L.S.: Waste glycerol from biodiesel synthesis as a component in deep eutectic solvents. Fuel Process. Technol. 138, 419–423 (2015)

    Article  Google Scholar 

  12. Dai, Y., van Spronsen, J., Witkamp, G.-J., Verpoorte, R., Choi, Y.H.: Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 766, 61–68 (2013)

    Article  Google Scholar 

  13. Dai, Y., Witkamp, G.-J., Verpoorte, R., Choi, Y.H.: Tailoring properties of natural deep eutectic solvents with water to facilitate their applications. Food Chem. 187, 14–19 (2015)

    Article  Google Scholar 

  14. Michail, A., Sigala, P., Grigorakis, S., Makris, D.P.: Kinetics of ultrasound-assisted polyphenol extraction from spent filter coffee using aqueous glycerol. Chem. Eng. Commun. 203, 407–413 (2015)

  15. Katsampa, P., Valsamedou, E., Grigorakis, S., Makris, D.P.: A green ultrasound-assisted extraction process for the recovery of antioxidant polyphenols and pigments from onion solid wastes using Box–Behnken experimental design and kinetics. Ind. Crops Prod. 77, 535–543 (2015)

    Article  Google Scholar 

  16. Karakashov, B., Grigorakis, S., Loupassaki, S., Makris, D.P.: Optimisation of polyphenol extraction from Hypericum perforatum (St. John’s Wort) using aqueous glycerol and response surface methodology. J. Appl. Res. Med. Aromat. Plants 2, 1–8 (2015)

    Article  Google Scholar 

  17. Blidi, S., Bikaki, M., Grigorakis, S., Loupassaki, S., Makris, D.P.: A comparative evaluation of bio-solvents for the efficient extraction of polyphenolic phytochemicals: apple waste peels as a case study. Waste Biomass Valoriz. 6, 1125–1133 (2015)

    Article  Google Scholar 

  18. Makris, D.P.: A novel kinetic assay for the examination of solid–liquid extraction of flavonoids from plant material. Res. J. Chem. Sci. 5, 18–23 (2015)

    Google Scholar 

  19. Shehata, E., Grigorakis, S., Loupassaki, S., Makris, D.P.: Extraction optimisation using water/glycerol for the efficient recovery of polyphenolic antioxidants from two Artemisia species. Sep. Purif. Technol. 149, 462–469 (2015)

    Article  Google Scholar 

  20. Li, J.-H., Zhang, G.-E., Wang, J.-Y.: Investigation of a eutectic mixture of sodium acetate trihydrate and urea as latent heat storage. Sol. Energy 47, 443–445 (1991)

    Article  Google Scholar 

  21. Li, J.-H., Zhou, J.-K., Huang, S.-X.: An investigation into the use of the eutectic mixture sodium acetate trihydrate-tartaric acid for latent heat storage. Thermochim. Acta 188, 17–23 (1991)

    Article  Google Scholar 

  22. Paiva, A., Craveiro, R., Aroso, I., Martins, M., Reis, R.L., Duarte, A.R.C.: Natural deep eutectic solvents–solvents for the 21st century. Sustain. Chem. Eng. 2, 1063–1071 (2014)

    Article  Google Scholar 

  23. Abbott, A.P., Harris, R.C., Ryder, K.S., D’Agostino, C., Gladden, L.F., Mantle, M.D.: Glycerol eutectics as sustainable solvent systems. Green Chem. 13, 82–90 (2011)

    Article  Google Scholar 

  24. Bi, W., Tian, M., Row, K.H.: Evaluation of alcohol-based deep eutectic solvent in extraction and determination of flavonoids with response surface methodology optimization. J. Chromatogr. A 1285, 22–30 (2013)

    Article  Google Scholar 

  25. Chemat, F., Khan, M.K.: Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason. Sonochem. 18, 813–835 (2011)

    Article  Google Scholar 

  26. Singh, B.S., Lobo, H.R., Pinjari, D.V., Jarag, K.J., Pandit, A.B., Shankarling, G.S.: Ultrasound and deep eutectic solvent (DES): a novel blend of techniques for rapid and energy efficient synthesis of oxazoles. Ultrason. Sonochem. 20, 287–293 (2013)

    Article  Google Scholar 

  27. Park, H.E., Tang, B., Row, K.H.: Application of deep eutectic solvents as additives in ultrasonic extraction of two phenolic acids from Herba Artemisiae Scopariae. Anal. Lett. 47, 1476–1484 (2014)

    Article  Google Scholar 

  28. Zhang, H., Tang, B., Row, K.H.: A green deep eutectic solvent-based ultrasound-assisted method to extract astaxanthin from shrimp byproducts. Anal. Lett. 47, 742–749 (2014)

    Article  Google Scholar 

  29. Omar, J., Alonso, I., Garaikoetxea, A., Etxebarria, N.: Optimization of focused ultrasound extraction (FUSE) and supercritical fluid extraction (SFE) of citrus peel volatile oils and antioxidants. Food Anal. Methods 6, 1244–1252 (2013)

    Article  Google Scholar 

  30. Rajha, H.N., Ziegler, W., Louka, N., Hobaika, Z., Vorobiev, E., Boechzelt, H.G., Maroun, R.G.: Effect of the drying process on the intensification of phenolic compounds recovery from grape pomace using accelerated solvent extraction. Int. J. Mol. Sci. 15, 18640–18658 (2014)

    Article  Google Scholar 

  31. Bravo, J., Juániz, I., Monente, C., Caemmerer, B., Kroh, L.W., De Peña, M.P., Cid, C.: Evaluation of spent coffee obtained from the most common coffeemakers as a source of hydrophilic bioactive compounds. J. Agric. Food Chem. 60, 12565–12573 (2012)

    Article  Google Scholar 

  32. Zuorro, A., Lavecchia, R.: Spent coffee grounds as a valuable source of phenolic compounds and bioenergy. J. Clean. Prod. 34, 49–56 (2012)

    Article  Google Scholar 

  33. Chen, Y., Dunford, N.T., Goad, C.: Phytochemical composition of extracts from wheat grain fractions obtained by tangential abrasive dehulling. LWT-Food Sci. Technol. 54, 353–359 (2013)

    Article  Google Scholar 

  34. Verma, B., Hucl, P., Chibbar, R.N.: Phenolic content and antioxidant properties of bran in 51 wheat cultivars. Cereal Chem. 85, 544–549 (2008)

    Article  Google Scholar 

  35. Tang, B., Row, K.H.: Recent developments in deep eutectic solvents in chemical sciences. Mon. Chem. 144, 1427–1454 (2013)

    Article  Google Scholar 

  36. Zhang, Q., Vigier, K.D.O., Royer, S., Jérôme, F.: Deep eutectic solvents: syntheses, properties and applications. Chem. Soc. Rev. 41, 7108–7146 (2012)

    Article  Google Scholar 

  37. Pandey, A., Rai, R., Pal, M., Pandey, S.: How polar are choline chloride-based deep eutectic solvents? Phys. Chem. Chem. Phys. 16, 1559–1568 (2014)

    Article  Google Scholar 

  38. Zhang, H., Tang, B., Row, K.: Extraction of catechin compounds from green tea with a new green solvent. Chem. Res. Chin. Univ. 30, 37–41 (2014)

    Article  Google Scholar 

  39. Makris, D.P., Boskou, G., Andrikopoulos, N.K.: Polyphenolic content and in vitro antioxidant characteristics of wine industry and other agri-food solid waste extracts. J. Food Compos. Anal. 20, 125–132 (2007)

    Article  Google Scholar 

  40. Magalhães, L.M., Segundo, M.A., Reis, S., Lima, J.L.: Methodological aspects about in vitro evaluation of antioxidant properties. Anal. Chim. Acta 613, 1–19 (2008)

    Article  Google Scholar 

  41. Makris, D., Kefalas, P.: Association between in vitro antiradical activity and ferric reducing power in aged red wines: a mechanistic approach. Food Sci. Technol. Int. 11, 11–18 (2005)

    Article  Google Scholar 

  42. Aoun, M., Makris, D.P.: Binary mixtures of natural polyphenolic antioxidants with ascorbic acid: impact of interactions on the antiradical activity. Int. Food Res. J. 19, 603–606 (2012)

    Google Scholar 

  43. Karvela, E., Makris, D.P., Karathanos, V.T.: Implementation of response surface methodology to assess the antiradical behaviour in mixtures of ascorbic acid and α-tocopherol with grape (Vitis vinifera) stem extracts. Food Chem. 132, 351–359 (2012)

    Article  Google Scholar 

  44. Aoun, M., Makris, D.P.: Use of response surface methodology to evaluate the reducing power in binary solutions of ascorbic acid with natural polyphenolic antioxidants. Int. J. Food Stud. 2, 238–251 (2013)

  45. Karvela, E., Makris, D.P.: Assessment of the reducing effects in mixtures of grape (Vitis vinifera) seed extracts with α-tocopherol using response surface methodology. J. Microbiol. Biotechnol. Food Sci. 2, 771 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris P. Makris.

Additional information

In memory of Dr. Panagiotis Kefalas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouratoglou, E., Malliou, V. & Makris, D.P. Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass. Waste Biomass Valor 7, 1377–1387 (2016). https://doi.org/10.1007/s12649-016-9539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9539-8

Keywords

Navigation