Skip to main content

Advertisement

Log in

Valorisation of Residue of Mentha arvensis by Pyrolysis: Evaluation of Agronomic and Environmental Benefits

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The elucidation of biochar properties across the various temperature ranges is necessary for the preparation of tailor made biochar from any feed stock. This paper reports selected physicochemical properties of biochar prepared from the residue of Mentha arvensis pyrolyzed at 450, 650 and 850 °C. Ultimate and proximate analyses, product distribution (bio-oil and biochar), TGA, Calorific values, FTIR, functional group analyses, cation exchange capacity and calcium carbonate equivalence of biochars revealed the variations and suitability of biochar for as a fuel feed stock and/or soil amendment. Bio-oil and biochars produced at 850 °C contained the highest carbon content (68 and 87%, respectively), and energy content (32 MJ/kg and 6837 kcal/mol, respectively) and could be a promising alternative for replacements of non-renewable-fuels. Biochar produced at 450 °C had the highest available nutrient contents (P: 47.3 mg/kg, NH3–N: 28 mg/kg, and NO3–N: 0.6 mg/kg), cation exchange capacity (161.8 meq/100 g) and calcium carbonate equivalence (83.5%) suitable and economical for soil fertility enhancement and liming of highly acidic soils (enhanced the pH up to 2.8 units at 6% application rate).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang, A., Bian, R., Pan, G., Cui, L., Hussain, Q., Li, L., Zheng, J., Zheng, J., Zhang, X., Han, X.: Effects of biochar amendment on soil quality, crop yield and greenhouse gas emission in a Chinese rice paddy: a field study of 2 consecutive rice growing cycles. Field Crops Res. 127, 153–160 (2012)

    Article  Google Scholar 

  2. Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.-K., Yang, J.E., Ok, Y.S.: Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536–544 (2012)

    Article  Google Scholar 

  3. Kauffman, N., Dumortier, J., Hayes, D.J., Brown, R.C., Laird, D.A.: Producing energy while sequestering carbon? The relationship between biochar and agricultural productivity. Biomass Bioenergy. 63, 167–176 (2014)

    Article  Google Scholar 

  4. Chintala, R., Schumacher, T.E., McDonald, L.M., Clay, D.E., Malo, D.D., Papiernik, S.K., Clay, S.A., Julson, J.L.: Phosphorus sorption and availability from biochars and soil/biochar mixtures. Clean–Soil Air Water 42(5), 626–634 (2014)

    Article  Google Scholar 

  5. Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S.: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419–428 (2012)

    Article  Google Scholar 

  6. Lehmann, J., Czimczik, C., Laird, D., Sohi, S.: Stability of biochar in soil. In: Biochar for environmental management: science and technology, 183–206. Earthscan, London (2009)

    Google Scholar 

  7. Doan, T.T., Bouvier, C., Bettarel, Y., Bouvier, T., Henry-des-Tureaux, T., Janeau, J.L., Lamballe, P., Van Nguyen, B., Jouquet, P.: Influence of buffalo manure, compost, vermicompost and biochar amendments on bacterial and viral communities in soil and adjacent aquatic systems. Appl. Soil Ecol. 73, 78–86 (2014)

    Article  Google Scholar 

  8. Qian, L., Chen, B.: Interactions of aluminum with biochars and oxidized biochars: implications for the biochar aging process. J. Agric. Food Chem. 62(2), 373–380 (2014)

    Article  Google Scholar 

  9. KELLY, C.N., CALDERÓN, F.C., Acosta-Martinez, V., MIKHA, M.M., Benjamin, J., RUTHERFORD, D.W., ROSTAD, C.E.: Switchgrass biochar effects on plant biomass and microbial dynamics in two soils from different regions. Pedosphere 25(3), 329–342 (2015)

    Article  Google Scholar 

  10. Chintala, R., Mollinedo, J., Schumacher, T.E., Papiernik, S.K., Malo, D.D., Clay, D.E., Kumar, S., Gulbrandson, D.W.: Nitrate sorption and desorption in biochars from fast pyrolysis. Microporous Mesoporous Mater. 179, 250–257 (2013)

    Article  Google Scholar 

  11. Anupam, K., Sharma, A.K., Lal, P.S., Dutta, S., Maity, S.: Preparation, characterization and optimization for upgrading Leucaena leucocephala bark to biochar fuel with high energy yielding. Energy. 106, 743–756 (2016)

    Article  Google Scholar 

  12. Updegraff, D.M.: Semimicro determination of cellulose inbiological materials. Anal Biochem. 32(3), 420–424 (1969)

    Article  Google Scholar 

  13. Van Soest, P., Robertson, J., Lewis, B.: Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. J. Dairy Sci. 74(10), 3583–3597 (1991)

    Article  Google Scholar 

  14. Ververis, C., Georghiou, K., Christodoulakis, N., Santas, P., Santas, R.: Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production. Ind. Crops Prod. 19(3), 245–254 (2004)

    Article  Google Scholar 

  15. Watanabe, F., Olsen, S.: Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 29(6), 677–678 (1965)

    Article  Google Scholar 

  16. Jackson, G.D.: Effects of nitrogen and sulfur on canola yield and nutrient uptake. Agron. J. 92(4), 644–649 (2000)

    Article  Google Scholar 

  17. Walkley, A., Black, I.A.: An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37(1), 29–38 (1934)

    Article  Google Scholar 

  18. Chapman, H.: Cation-exchange capacity. In: Methods of soil analysis. Part 2. Chemical and microbiological properties (methodsofsoilanb), pp 891–901. American Society of Agronomy, Soil Science Society of America, Madison (1965)

    Google Scholar 

  19. Jeong, C.Y., Dodla, S.K., Wang, J.J.: Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products. Chemosphere 142, 4–13 (2015)

    Article  Google Scholar 

  20. Harvey, D.: Rebel cities: from the right to the city to the urban revolution. Verso Books, London (2012)

    Google Scholar 

  21. Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S., Qiu, R.: Relative distribution of Pb 2 + sorption mechanisms by sludge-derived biochar. Water Res. 46(3), 854–862 (2012)

    Article  Google Scholar 

  22. Asadullah, M., Zhang, S., Min, Z., Yimsiri, P., Li, C.-Z.: Effects of biomass char structure on its gasification reactivity. Bioresour. Technol. 101(20), 7935–7943 (2010)

    Article  Google Scholar 

  23. Deshmukh, Y., Yadav, V., Nigam, N., Yadav, A., Khare, P.: Quality of bio-oil by pyrolysis of distilled spent of Cymbopogon flexuosus. J. Anal. Appl. Pyrolysis 115, 43–50 (2015)

    Article  Google Scholar 

  24. Srinivasan, P., Sarmah, A.K.: Characterisation of agricultural waste-derived biochars and their sorption potential for sulfamethoxazole in pasture soil: a spectroscopic investigation. Sci. Total Environ. 502, 471–480 (2015)

    Article  Google Scholar 

  25. Initiative, I.B.: Standardized product definition and product testing guidelines for biochar that is used in soil. IBI biochar Stand. (2012)

  26. Jiang, J., Yuan, M., Xu, R., Bish, D.L.: Mobilization of phosphate in variable-charge soils amended with biochars derived from crop straws. Soil Tillage Res. 146, 139–147 (2015)

    Article  Google Scholar 

  27. Yadav, V., Baruah, B., Khare, P.: Comparative study of thermal properties of bio-coal from aromatic spent with low rank sub-bituminous coals. Bioresour. Technol. 137, 376–385 (2013)

    Article  Google Scholar 

  28. Jenkins, B., Baxter, L., Miles, T.: Combustion properties of biomass. Fuel Process. Technol. 54(1), 17–46 (1998)

    Article  Google Scholar 

  29. Karampinis, E., Grammelis, P., Agraniotis, M., Violidakis, I., Kakaras, E.: Co-firing of biomass with coal in thermal power plants: technology schemes, impacts, and future perspectives. Wiley Interdiscip. Rev. 3(4), 384–399 (2014)

    Google Scholar 

  30. Mohan, D., Sarswat, A., Ok, Y.S., Pittman, C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. 160, 191–202 (2014)

    Article  Google Scholar 

  31. Xiao, X., Chen, B., Zhu, L.: Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol 48(6), 3411–3419 (2014)

    Article  Google Scholar 

  32. Harvey, O.R., Kuo, L.-J., Zimmerman, A.R., Louchouarn, P., Amonette, J.E., Herbert, B.E.: An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars). Environ Sci Technol 46(3), 1415–1421 (2012)

    Article  Google Scholar 

  33. Hammond, J., Shackley, S., Sohi, S., Brownsort, P.: Prospective life cycle carbon abatement for pyrolysis biochar systems in the UK. Energy Policy. 39(5), 2646–2655 (2011)

    Article  Google Scholar 

  34. Enders, A., Hanley, K., Whitman, T., Joseph, S., Lehmann, J.: Characterization of biochars to evaluate recalcitrance and agronomic performance. Bioresour. Technol. 114, 644–653 (2012)

    Article  Google Scholar 

  35. Chan, K.Y., Xu, Z.: Biochar: nutrient properties and their enhancement. Biochar Environ. Manage 1, 67–84 (2009)

    Google Scholar 

  36. Xu, G., Zhang, Y., Shao, H., Sun, J.: Pyrolysis temperature affects phosphorus transformation in biochar: Chemical fractionation and 31 P NMR analysis. Sci. Total Environ. 569, 65–72 (2016)

    Article  Google Scholar 

  37. Jin, Y., Liang, X., He, M., Liu, Y., Tian, G., Shi, J.: Manure biochar influence upon soil properties, phosphorus distribution and phosphatase activities: a microcosm incubation study. Chemosphere (2015)

  38. Yuan, J.-H., Xu, R.-K., Zhang, H.: The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresour. Technol. 102(3), 3488–3497 (2011)

    Article  Google Scholar 

  39. Budai, A., Wang, L., Gronli, M., Strand, L.T., Antal, M.J. Jr., Abiven, S., Dieguez-Alonso, A., Anca-Couce, A., Rasse, D.P.: Surface properties and chemical composition of corncob and Miscanthus biochars: effects of production temperature and method. J Agric Food Chem. 62(17), 3791–3799 (2014)

    Article  Google Scholar 

  40. Xiong, J., Zhou, Q., Luo, H., Xia, L., Li, L., Sun, M., Yu, Z.: Systemic nematicidal activity and biocontrol efficacy of Bacillus firmus against the root-knot nematode Meloidogyne incognita. World J. Microbiol. Biotechnol. 31(4), 661–667 (2015)

    Article  Google Scholar 

  41. Lansky, S., Zehavi, A., Dann, R., Dvir, H., Belrhali, H., Shoham, Y., Shoham, G.: Purification, crystallization and preliminary crystallographic analysis of Gan1D, a GH1 6-phospho–galactosidase from Geobacillus stearothermophilus T1. Acta Crystallogr Sect F 70(2), 225–231 (2014)

    Article  Google Scholar 

  42. Saikia, R., Gogoi, D., Mazumder, S., Yadav, A., Sarma, R., Bora, T., Gogoi, B.: Brevibacillus laterosporus strain BPM3, a potential biocontrol agent isolated from a natural hot water spring of Assam, India. Microbiol. Res. 166(3), 216–225 (2011)

    Article  Google Scholar 

  43. Wu, Y., Jiang, Y., Jiao, J., Liu, M., Hu, F., Griffiths, B.S., Li, H.: Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies. Colloids Surf. B. 114, 342–348 (2014)

    Article  Google Scholar 

  44. Field, J.L., Keske, C.M.H., Birch, G.L., DeFoort, M.W., Cotrufo, M.F.: Distributed biochar and bioenergy coproduction: a regionally specific case study of environmental benefits and economic impacts. Glob. Chang. Biol. Bioenergy 5(2), 177–191 (2013)

    Article  Google Scholar 

  45. Karak, T., Bhagat, R.: Trace elements in tea leaves, made tea and tea infusion: a review. Food Res. Int. 43(9), 2234–2252 (2010)

    Article  Google Scholar 

  46. Chintala, R., Owen, R.K., Schumacher, T.E., Spokas, K.A., McDonald, L.M., Kumar, S., Clay, D.E., Malo, D.D., Bleakley, B.: Denitrification kinetics in biomass-and biochar-amended soils of different landscape positions. Environ. Sci. Pollut. Res. 22(7), 5152–5163 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Department of Science and Technology (DST), Government of India through Fast Track Project (PK) (Sr/FTP/Es-20/2012) and Women Scientist project (NN) (SR/WOSA/AS-01/2013). Authors are also acknowledging Director, CSIR-CIMAP for providing analysis facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puja Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nigam, N., Shanker, K. & Khare, P. Valorisation of Residue of Mentha arvensis by Pyrolysis: Evaluation of Agronomic and Environmental Benefits. Waste Biomass Valor 9, 1909–1919 (2018). https://doi.org/10.1007/s12649-017-9928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9928-7

Keywords

Navigation