Skip to main content

Advertisement

Log in

Decision Making Supporting Tool Combining AHP Method with GIS for Implementing Food Waste Valorisation Strategies

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Food waste shows great potential to be valorised as secondary material for bio-products, animal feed or energy production. However, the geographical dispersion of food waste generation requires the selection of appropriate locations and the optimization of logistics routes for a centralized food waste management solution. Thus, since the viability of food waste valorisation options depends on a high number of technical, geographic, economic and environmental criteria, all of those must be together quantified, weighed and assessed to assure a successful implementation of the selected valorisation option. Within the framework of Life GISWASTE project (http://www.lifegiswaste.eu), a MCDA tool has been developed to help decision-makers (private or public waste management bodies and companies) to implement food waste valorisation strategies. This tool implements AHP method and GIS to evaluate the main parameters involved in the process. The use of GISWASTE tool allows creating scenarios with the food waste generators that achieve the minimum values stablished for technical criteria (net scenarios). Once the net scenarios have been created, geographic optimization and main economic and environmental impacts can be preliminarily calculated and reported. GISWASTE tool decreases considerably the time required to evaluate the different scenarios for each study case, as well as facilitating a sensitivity study when geographic, technical, economic and environmental criteria values are modified. Hence, as well as reducing the risk associated with the implementation of food waste valorisation strategies, it also helps to public waste management authorities or private organisms to define bio-economy based waste valorisation strategies. Finally, as an example of GISWASTE tool usefulness, this paper also shows the validation results of a real case study performed for anaerobic digestion valorisation option in the Basque Country region (Spain).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gustavsson, J., Cederberg, C., Sonesson, U., Van Otterdijk, R., Meybeck A.: Global food losses and food waste: extent, causes and prevention. Food and Agriculture Organisation of the United Nations, Rome. http://www.fao.org/docrep/014/mb060e/mb060e.pdf (2011). Accessed 07 Dec 2016

  2. Food and Agriculture Organizations of the United Nations FAO. Global initiative on food loss and waste reduction. http://www.fao.org/3/a-i4068e.pdf (2015). Accessed 07 Dec 2016

  3. Stenmarck, A., Jensen, C., Quested, T., Moates, G.: Estimates of European food waste levels. https://www.eu-fusions.org/phocadownload/Publications/Estimates%20of%20European%20food%20waste%20levels.pdf (2016). Accessed 07 Dec 2016

  4. Bio Intelligence Service: Preparatory study on food waste across EU 27. European Commission. Bio Intelligence Service, Paris. http://ec.europa.eu/environment/eussd/pdf/bio_foodwaste_report.pdf (2010). Accessed 07 Dec 2016

  5. Preedy, V. R., Patel, V. B. (eds.) Principles for developing a safe and sustainable valorisation of food waste for animal feed: Second generation feedstuff Chapter, in “Famine, Starvation, and Nutrient Deprivation” Handbook, Springer International Publishing, New York (2019)

  6. Garrone, P., Melacini, M., Perego, A.: Opening the black box of food waste reduction. Food Pol. 46, 129–139 (2014)

    Article  Google Scholar 

  7. Stenmarck, A., Jensen, C., Quested, T., Moates, G.: Estimates of European food waste levels. ISBN 978-91-88319-01-2 (2016)

  8. EEA:SOER 2015—The European environment—state and outlook 2015. http://www.eea.europa.eu/soer-2015/synthesis/report/action-download-pdf (2015). Accessed 07 Dec 2016

  9. EEB Advancing Resource Efficiency In Europe http://www.eeb.org/EEB/?LinkServID=4E9BB68D-5056-B741-DBCCE36ABD15F02F (2014). Accessed 07 Dec 2016

  10. WRAP: Food Futures: from business as usual to business unusual http://www.wrap.org.uk/sites/files/wrap/Food_Futures_%20report_0.pdf (2015). Accessed 07 Dec 2016

  11. Perpiña, C., Martínez-Llario, J.C., Pérez-Navarro, Á.: Multicriteria assessment in GIS environments for siting biomass plants. Land Use Policy 31, 326–335 (2013)

    Article  Google Scholar 

  12. Stefanović, G., Milutinović, B., Vučićević, B., Denčić-Mihajlov, K., Turanjanin, V.: A comparison of the analytic hierarchy process and the analysis and synthesis of parameters under information deficiency method for assessing the sustainability of waste management scenarios. J. Clean Prod. 130, 1–11 (2015)

    Google Scholar 

  13. Wang, J., Jing, Y., Zhang, C., Zhao, J.: Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sust. Energy Rev. 13(9), 2263–2278 (2009)

    Article  Google Scholar 

  14. Kim, M., Jang, Y., Lee, S.: Application of Delphi-AHP methods to select the priorities of WEEE for recycling in a waste management decision-making tool. J. Environ. Manage. 128, 941–948 (2013)

    Article  Google Scholar 

  15. Luthra, S., Mangla, S., Xu, L., Diabat, A.: Using AHP to evaluate barriers in adopting sustainable consumption and production initiatives in a supply chain. Int. J. Prod. Econ. 181(Part B):342–349 (2016)

    Article  Google Scholar 

  16. Vasiljević, T., Srdjević, Z., Bajčetić, R., Vojinović Miloradov, M.: GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: a case study from Serbia. Environ. Manage. 49, 445–458 (2011)

    Google Scholar 

  17. Saaty, T.: The analytical hierarchy process. McGraw-Hill, New York (1980)

    MATH  Google Scholar 

  18. Bordas, J.: Implementación de una herramienta basada en tecnología SIG y técnicas de decisión multi-criterio para la obtención de mapas de orientación a la ubicación de instalaciones de gestión de residuos. Mapping 107, 32–38 (2006)

    Google Scholar 

  19. Sener, S., Erhan, S., Nas, B., Karagüzel, R.: Combining AHP with GIS for landfill site selection: a case study in the Lake Beysehir catchment area (Konya, Turkey). Waste Manage. 30, 2037–2046 (2010)

    Article  Google Scholar 

  20. Gdoura, K., Anane, M., Jellali, S.: Geospatial and AHP-multicriteria analyses to locate and rank suitable sites for groundwater recharge with reclaimed water. Resour. Conserv. Recy. 104, 19–30 (2015)

    Article  Google Scholar 

  21. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Sect. 24.3: “Dijkstra’s algorithm”. Introduction to Algorithms (2nd ed.). McGraw-Hill, New York, 595–601 (2001)

    Google Scholar 

  22. Brodie, M., Chernov, M., Sunderasan, S.: Optimal debt and equity value in the presence of Chap. 7 and Chap. 11. J. Finance 62(3), 1341–1377 (2007)

    Article  Google Scholar 

  23. Perry, R. H., Green, D. W. (eds.): Process economics Chap. 9, in “perry’s chemical engineers’ handbook”, 8th edn. McGraw-Hill, New York (2008)

    Google Scholar 

  24. Thomsen, M., Seghetta, M., Mikkelsen, M.H., Gyldenkærne, S., Becker, T., Caro, D., Frederiksen, P.: Comparative life cycle assessment of biowaste to resource management systems—a Danish case study. J. Clean Prod. 142, 0959–6526 (2016)

    Google Scholar 

  25. San Martin, D., Ramos, S., Zufía, J.: Valorisation of food waste to produce new raw materials for animal feed. Food Chem. 198, 68–74 (2016)

    Article  Google Scholar 

  26. Zelenović Vasiljević, T., Srdjević, Z., Bajčetić, R., Srdjević, Z., Bajčetić, R., Vojinović, M.: GIS and the analytic hierarchy process for regional landfill site selection in transitional countries: a case study from Serbia. Environ. Manage. 49, 445 (2012)

    Article  Google Scholar 

  27. Karellas, S., Boukis, I., Kontopoulos, G.: Development of an investment decision tool for biogas production from agricultural waste. Renew. Sust. Energy Rev. 4(4), 1273–1282 (2010)

    Article  Google Scholar 

  28. Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M.: IPCC: climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York (2013)

    Google Scholar 

  29. Ecoinvent Centre, Ecoinvent database v.2.2. (2010)

Download references

Acknowledgements

The authors wish to thanks EU LIFE+ Programme under Environment Policy & Governance (LIFE I2 ENV/ES/000406) and Basque Government for their funding of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. San Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

San Martin, D., Orive, M., Martínez, E. et al. Decision Making Supporting Tool Combining AHP Method with GIS for Implementing Food Waste Valorisation Strategies. Waste Biomass Valor 8, 1555–1567 (2017). https://doi.org/10.1007/s12649-017-9976-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-017-9976-z

Keywords

Navigation