Skip to main content
Log in

Influence of Granulated Silico-Manganese Slag on Compressive Strength and Microstructure of Ambient Cured Alkali-Activated Fly Ash Binder

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work focuses on gainful utilization of low reactive fly ash at ambient temperature into alkali-activated binder with the addition of another industrial waste silico-manganese (SiMn) slag. Granulated SiMn slag (GSS) percentage was gradually increased into fly ash-based reference batch. The influence of slag on reactivity of the blends was monitored by isothermal conduction calorimetry. Reactivity was improved with increasing slag content. The structural reorganizations of the resultant binder were detected by peak shifting in Fourier transform infrared spectroscopy study. The positional change of the hump in X-ray diffraction analysis was due to structural rearrangement of the binder. The calcium-rich hydrated product formation was increased with slag inclusion. The fly ash-derived geopolymer gel (N–A–S–H) was coexisted with slag activated gel (C–S–H/C–A–S–H), (where N = Na2O, A = Al2O3, C = CaO, S = SiO2, and H = H2O) in the blend matrix. EDX analysis confirmed the variation in Si/Al, Ca/Si, and Na/Al ratios of the binder with the alteration of reaction products. The development of better compressive strength in slag-rich binder attributed with the formation of Ca-rich gel phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Purdon, A.: The action of alkalis on blast furnace slag. J. Soc. Chem. Ind. 59, 191–202 (1940)

    Article  Google Scholar 

  2. Glukhovsky, V.D.: Soil silicate-based products and structures. Gosstroiizdat Publish, Kiev (1957)

    Google Scholar 

  3. Palomo, A., Krivenko, P., Garcia-Lodeiro, I., Kavalerova, E., Maltseva, O., Fernández-Jiménez, A.: A review on alkaline activation: new analytical perspectives. Mater. Constr. 64, 1–24 (2014)

    Article  Google Scholar 

  4. Davidovits, J.: Geopolymers and geopolymeric materials. J. Therm. Anal. 35, 429–441 (1989)

    Article  Google Scholar 

  5. Yang, K.H., Song, J.K., Song, K.I.: Assessment of CO2 reduction of alkali-activated concrete. J. Clean. Prod. 39, 265–272 (2013)

    Article  Google Scholar 

  6. Turner, L.K., Collins, F.G.: Carbon dioxide equivalent (CO2) emissions: a comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 43, 125–130 (2013)

    Article  Google Scholar 

  7. Torres-Carrasco, M., Rodríguez-Puertas, C., Alonso, M.d.M., Puertas, F.: Alkali activated slag cements using waste glass as alternative activators. Rheological behavior. Bull. Span. Soc. Ceram. Glass. 54, 45–57 (2015)

    Google Scholar 

  8. Pacheco-Torgal, F., Abdollahnejad, Z., Camões, A.F., Jamshidi, M., Ding, Y.: Durability of alkali-activated binders: A clear advantage over Portland cement or an unproven issue. Constr. Build. Mater. 30, 400–405 (2012)

    Article  Google Scholar 

  9. Fernández-Jiménez, A., Palomo, A., López-Hombrados, C.: Engineering properties of alkali activated fly ash concrete. ACI Mater. J. 103, 106–112 (2006)

    Google Scholar 

  10. Bakharev, T., Sanjayan, J.G., Cheng, Y.B.: Resistance of alkali-activated slag concrete to acid attack. Cem. Concr. Res. 33, 1607–1611 (2003)

    Article  Google Scholar 

  11. Provis, J.L., Bernal, S.A.: Geopolymers and related alkali-activated materials. Annu. Rev. Mater. Res. 44, 299–327 (2014)

    Article  Google Scholar 

  12. Nazari, A., Sanjayan, J.G.: Synthesis of geopolymer from industrial wastes. J. Clean. Prod. 99, 297–304 (2015)

    Article  Google Scholar 

  13. Nath, S.K., Kumar, S.: Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr. Build. Mater. 38, 924–930 (2013)

    Article  Google Scholar 

  14. Djobo, J.N.Y., Tchakoute, H.K., Ranjbar, N., Elimbi, A., Tchadjie, L.N., Njopwouo, D.: Gel composition and strength properties of alkali-activated oyster shell-volcanic ash: effect of synthesis conditions. J. Am. Ceram. Soc. 99, 3159–3166 (2016)

    Article  Google Scholar 

  15. Davidovits, J., Comrie, D.C., Paterson, J.H., Ritcey, D.J.: Geopolymeric concretes for environmental proctection. Concr. Int. Des. Constr. 12, 30–40 (1990)

    Google Scholar 

  16. Zhang, J., Provis, J.L., Feng, D., van Deventer, J.S.J.: Geopolymers for immobilization of Cr6+, Cd2+, and Pb2+. J. Hazard. Mater. 157, 587–598 (2008)

    Article  Google Scholar 

  17. Nikolic, V., Komljenovic, M., Marjanovic, N., Bascarevic, A., Petrovic, R.: Lead immobilization by geopolymers based on mechanically activated fly ash. Ceram. Int. 40, 8479–8488 (2014)

    Article  Google Scholar 

  18. Onisei, S., Pontikes, Y., Gerven, T.V., Angelopoulos, G.N., Velea, T., Predica, V., Moldovan, P.: Synthesis of inorganic polymers using fly ash and primary lead slag. J. Hazard. Mater. 205–206, 101–110 (2012)

    Article  Google Scholar 

  19. Navarro, R., Zornoza, E., Garcés, P., Sánchez, I., Alcocel, E.G.: Optimization of the alkali activation conditions of ground granulated SiMn slag. Constr. Build. Mater. 150, 781–791 (2017)

    Article  Google Scholar 

  20. Kumar, S., García-Triñanes, P., Teixeira-Pinto, A., Bao, M.: Development of alkali activated cement from mechanically activated silico-manganese (SiMn) slag. Cem. Concr. Compos. 40, 7–13 (2013)

    Article  Google Scholar 

  21. Karakoç, M.B., Türkmen, İ, Maraş, M.M., Kantarci, F., Demirboğa, R., Toprak, M.U.: Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Constr. Build. Mater. 72, 283–292 (2014)

    Article  Google Scholar 

  22. Alex, T.C., Kalinkin, A.M., Nath, S.K., Gurevich, B.I., Kalinkina, E.V., Tyukavkina, V.V., Kumar, S.: Utilization of zinc slag through geopolymerization: influence of milling atmosphere. Int. J. Miner. Process. 123, 102–107 (2013)

    Article  Google Scholar 

  23. Kumar, S.: The Properties and Performance of Red Mud-Based Geopolymeric Masonry Blocks, pp. 311–328. Eco-Efficient Mason Bricks Blocks, Elsevier (2015)

    Google Scholar 

  24. Nath, S.K., Mukherjee, S., Maitra, S., Kumar, S.: Ambient and elevated temperature geopolymerization behavior of class F fly ash. Trans. Indian Ceram. Soc. 73, 126–132 (2014)

    Article  Google Scholar 

  25. Phair, J.W., van Deventer, J.S.J.: Characterization of fly-ash-based geopolymeric binders activated with sodium aluminate. Ind. Eng. Chem. Res. 41, 4242–4251 (2002)

    Article  Google Scholar 

  26. Rattanasak, U., Chindaprasirt, P.: Influence of NaOH solution on the synthesis of fly ash geopolymer. Miner. Eng. 22, 1073–1078 (2009)

    Article  Google Scholar 

  27. Bernal, S.A., Provis, J.L., Rose, V., Gutierrez, R.M.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33, 46–54 (2011)

    Article  Google Scholar 

  28. Kumar, S., Mucsi, G., Kristaly, F., Pekker, P.: Mechanical activation of fly ash and its influence on micro and nano-structural behaviour of resulting geopolymer. Adv. Powder Technol. 28, 805–813 (2017)

    Article  Google Scholar 

  29. Djobo, J.N.Y., Elimbi, A., Tchakouté, H.K., Kumar, S.: Mechanical activation of volcanic ash for geopolymer synthesis: effect on reaction kinetics, gel characteristics, physical and mechanical properties. RSC Adv. 6, 39106–39117 (2016)

    Article  Google Scholar 

  30. Shi, C., Day, R.L.: A calorimetric study of early hydration of alkali-slag cements. Cem. Concr. Res. 25, 1333–1346 (1995)

    Article  Google Scholar 

  31. Nath, P., Sarker, P.K.: Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr. Build. Mater. 66, 163–171 (2014)

    Article  Google Scholar 

  32. Xu, H., van Deventer, J.S.J.: The geopolymerisation of alumina—silicate minerals. Int. J. Miner. Process. 59, 247–266 (2000)

    Article  Google Scholar 

  33. Fernández-Jiménez, A., Palomo, A.: Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem. Concr. Res. 35, 1984–1992 (2005)

    Article  Google Scholar 

  34. Allahverdi, A., Ahmadnezhad, S.: Mechanical activation of silicomanganese slag and its influence on the properties of Portland slag cement. Powder Tech. 251, 41–51 (2014)

    Article  Google Scholar 

  35. Nath, S.K., Kumar, S.: Evaluation of the suitability of ground granulated silico-manganese slag in Portland slag cement. Constr. Build. Mater. 125, 127–134 (2016)

    Article  Google Scholar 

  36. IS: 4031: Method of physical tests for hydraulic cement, Indian Standard (1988)

  37. Nath, S.K., Kumar, S.: Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag—Fly ash blends. Constr. Build. Mater. 147, 371–379 (2017)

    Article  Google Scholar 

  38. Frias, M., Sanchez, de Rojas M.I., Santamaria, J., Rodriguez, C.: Recycling of silicomanganese slag as pozzolanic material in Portland cements: basic and engineering properties. Cem. Concr. Res. 36, 487–491 (2006)

    Article  Google Scholar 

  39. Gao, X., Yu, Q.L., Brouwers, H.J.H.: Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag–fly ash blends. Constr. Build. Mater. 80, 105–115 (2015)

    Article  Google Scholar 

  40. Nath, S.K., Maitra, S., Mukherjee, S., Kumar, S.: Microstructural and morphological evolution of fly ash based geopolymers. Constr. Build. Mater. 111, 758–765 (2016)

    Article  Google Scholar 

  41. Somna, K., Jaturapitakkul, C., Kajitvichyanukul, P., Chindaprasirt, P.: NaOH activated ground fly ash geopolymer cured at ambient temperature. Fuel 90, 2118–2124 (2011)

    Article  Google Scholar 

  42. Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R.: (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26, 3789–3797 (2006)

    Article  Google Scholar 

  43. Fine, G., Stolper, E.: Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci. Lett. 76, 263–278 (1986)

    Article  Google Scholar 

  44. Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697 (2005)

    Article  Google Scholar 

  45. Cwirzen, A., Provis, J.L., Penttala, V., Habermehl-Cwirzen, K.: The effect of limestone on sodium hydroxide-activated metakaolin-based geopolymers. Constr. Build. Mater. 66, 53–62 (2014)

    Article  Google Scholar 

  46. Garcia-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D.E.: Effects of calcium addition on N-A-S-H cementitious gels. J. Am. Ceram. Soc. 93, 1934–1940 (2010)

    Google Scholar 

  47. Garcia-Lodeiro, I., Palomo, A., Fernández-Jiménez, A., Macphee, D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 41, 923–931 (2011)

    Article  Google Scholar 

  48. Mackenzie, K.J.D., Smith, E., Wong, A.: A multinuclear MAS NMR study of calcium-containing aluminosilicate inorganic polymers. J. Mater. Chem. 17, 5090–5096 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-National Metallurgical Laboratory, Jamshedpur, India for his kind permission to publish the paper. We would like to thank all raw materials suppliers. The authors also acknowledge the technical support from CSIR-NML staff.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, S.K., Kumar, S. Influence of Granulated Silico-Manganese Slag on Compressive Strength and Microstructure of Ambient Cured Alkali-Activated Fly Ash Binder. Waste Biomass Valor 10, 2045–2055 (2019). https://doi.org/10.1007/s12649-018-0213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-018-0213-1

Keywords

Navigation