Skip to main content

Advertisement

Log in

Fast Pyrolysis of Peanut Husk Agroindustrial Waste: Intensification of Anhydro Sugar (Levoglucosan) Production

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Peanut husks are agro-industrial waste and represent about 20 wt% of the peanut harvest. This waste product was subjected to fast pyrolysis in a pyroprobe reactor coupled with GC/MS at temperatures ranging from 350 to 600 °C to maximize levoglucosan production. Prior to pyrolysis, the biomass was washed with acetic acid (10 wt%) to remove the alkali and alkaline earth metals. Levoglucosan production from pretreated biomass increased for all the temperatures studied. However, the best result was observed at 550 °C. At this temperature, 35 wt% of produced levoglucosan was found in the volatile fraction, representing around a nine-fold increase in levoglucosan production compared to the untreated biomass. These results may be due to the removal of the alkali and alkaline earth metals or the morphological changes observed in the biomass via SEM. While the yields of undesirable compounds derived from lignin that interfere with levoglucosan purification and its applications (phenol, guaiacol, syringol and catechol) decreased as the pyrolysis temperature increased, the yields of other compounds (vanillin, eugenol, cresol, 4-methylcyclohexanone, furfural and acetaldehyde) increased. Our results confirm that pretreated peanut husks have great potential in levoglucosan production via fast pyrolysis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K.: Bioethanol production from agricultural wastes: an overview. Renew. Energy 37(1), 19–27 (2012). https://doi.org/10.1016/j.renene.2011.06.045

    Article  Google Scholar 

  2. David, G.F., Justo, O.R., Perez, V.H., Garcia-Perez, M.: Thermochemical conversion of sugarcane bagasse by fast pyrolysis: high yield of levoglucosan production. J. Anal. Appl. Pyrol. 133, 246–253 (2018). https://doi.org/10.1016/j.jaap.2018.03.004

    Article  Google Scholar 

  3. David, G.F., Perez, V.H., Rodriguez Justo, O., Garcia-Perez, M.: Effect of acid additives on sugarcane bagasse pyrolysis: production of high yields of sugars. Biores. Technol. 223, 74–83 (2017). https://doi.org/10.1016/j.biortech.2016.10.051

    Article  Google Scholar 

  4. David, G.F., Ríos-Ríos, A.M., de Fátima, Â., Perez, V.H., Fernandes, S.A.: The use of p-sulfonic acid calix[4]arene as organocatalyst for pretreatment of sugarcane bagasse increased the production of levoglucosan. Ind. Crops Prod. 134, 382–387 (2019). https://doi.org/10.1016/j.indcrop.2019.02.034

    Article  Google Scholar 

  5. Pecha, B., Arauzo, P., Garcia-Perez, M.: Impact of combined acid washing and acid impregnation on the pyrolysis of Douglas fir wood. J. Anal. Appl. Pyrol. 114, 127–137 (2015). https://doi.org/10.1016/j.jaap.2015.05.014

    Article  Google Scholar 

  6. Chan, J.K.S., Duff, S.J.B.: Methods for mitigation of bio-oil extract toxicity. Biores. Technol. 101(10), 3755–3759 (2010). https://doi.org/10.1016/j.biortech.2009.12.054

    Article  Google Scholar 

  7. Layton, D.S., Ajjarapu, A., Choi, D.W., Jarboe, L.R.: Engineering ethanologenic Escherichia coli for levoglucosan utilization. Biores. Technol. 102(17), 8318–8322 (2011). https://doi.org/10.1016/j.biortech.2011.06.011

    Article  Google Scholar 

  8. Lian, J., Chen, S., Zhou, S., Wang, Z., O’Fallon, J., Li, C.-Z., Garcia-Perez, M.: Separation, hydrolysis and fermentation of pyrolytic sugars to produce ethanol and lipids. Biores. Technol. 101(24), 9688–9699 (2010). https://doi.org/10.1016/j.biortech.2010.07.071

    Article  Google Scholar 

  9. Lian, J., Garcia-Perez, M., Chen, S.: Fermentation of levoglucosan with oleaginous yeasts for lipid production. Biores. Technol. 133, 183–189 (2013). https://doi.org/10.1016/j.biortech.2013.01.031

    Article  Google Scholar 

  10. Zhuang, X.L., Zhang, H.X., Yang, J.Z., Qi, H.Y.: Preparation of levoglucosan by pyrolysis of cellulose and its citric acid fermentation. Biores. Technol. 79(1), 63–66 (2001). https://doi.org/10.1016/S0960-8524(01)00023-2

    Article  Google Scholar 

  11. Fahmi, R., Bridgwater, A.V., Darvell, L.I., Jones, J.M., Yates, N., Thain, S., Donnison, I.S.: The effect of alkali metals on combustion and pyrolysis of Lolium and Festuca grasses, switchgrass and willow. Fuel 86(10), 1560–1569 (2007). https://doi.org/10.1016/j.fuel.2006.11.030

    Article  Google Scholar 

  12. Yang, Z., Liu, X., Yang, Z., Zhuang, G., Bai, Z., Zhang, H., Guo, Y.: Preparation and formation mechanism of levoglucosan from starch using a tubular furnace pyrolysis reactor. J. Anal. Appl. Pyrol. 102, 83–88 (2013). https://doi.org/10.1016/j.jaap.2013.03.012

    Article  Google Scholar 

  13. Wang, J., Wei, Q., Zheng, J., Zhu, M.: Effect of pyrolysis conditions on levoglucosan yield from cotton straw and optimization of levoglucosan extraction from bio-oil. J. Anal. Appl. Pyrol. 122, 294–303 (2016). https://doi.org/10.1016/j.jaap.2016.09.013

    Article  Google Scholar 

  14. Rizhikovs, J., Brazdausks, P., Dobele, G., Jurkjane, V., Paze, A., Meile, K., Puke, M.: Pretreated hemp shives: possibilities of conversion into levoglucosan and levoglucosenone. Ind. Crops Prod. 139, 111520 (2019). https://doi.org/10.1016/j.indcrop.2019.111520

    Article  Google Scholar 

  15. Sun, T., Li, Z., Zhang, Z., Wang, Z., Yang, S., Yang, Y., Wang, X., Liu, S., Zhang, Q., Lei, T.: Fast corn stalk pyrolysis and the influence of catalysts on product distribution. Biores. Technol. 301, 122739 (2020). https://doi.org/10.1016/j.biortech.2020.122739

    Article  Google Scholar 

  16. Kawamoto, H., Morisaki, H., Saka, S.: Secondary decomposition of levoglucosan in pyrolytic production from cellulosic biomass. J. Anal. Appl. Pyrol. 85(1), 247–251 (2009). https://doi.org/10.1016/j.jaap.2008.08.009

    Article  Google Scholar 

  17. Garcia-Perez, M., Wang, S., Shen, J., Rhodes, M., Lee, W.J., Li, C.-Z.: Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of mallee woody biomass. Energy Fuels 22(3), 2022–2032 (2008). https://doi.org/10.1021/ef7007634

    Article  Google Scholar 

  18. Tessini, C., Vega, M., Müller, N., Bustamante, L., von Baer, D., Berg, A., Mardones, C.: High performance thin layer chromatography determination of cellobiosan and levoglucosan in bio-oil obtained by fast pyrolysis of sawdust. J. Chromatogr. A 1218(24), 3811–3815 (2011). https://doi.org/10.1016/j.chroma.2011.04.037

    Article  Google Scholar 

  19. Liaw, S.-S., Haber Perez, V., Zhou, S., Rodriguez-Justo, O., Garcia-Perez, M.: Py-GC/MS studies and principal component analysis to evaluate the impact of feedstock and temperature on the distribution of products during fast pyrolysis. J. Anal. Appl. Pyrol. 109, 140–151 (2014). https://doi.org/10.1016/j.jaap.2014.06.018

    Article  Google Scholar 

  20. Zhou, S., Wang, Z., Liaw, S.-S., Li, C.-Z., Garcia-Perez, M.: Effect of sulfuric acid on the pyrolysis of Douglas fir and hybrid poplar wood: Py-GC/MS and TG studies. J. Anal. Appl. Pyrol. 104, 117–130 (2013). https://doi.org/10.1016/j.jaap.2013.08.013

    Article  Google Scholar 

  21. Li, Q., Steele, P.H., Yu, F., Mitchell, B., Hassan, E.-B.M.: Pyrolytic spray increases levoglucosan production during fast pyrolysis. J. Anal. Appl. Pyrol. 100, 33–40 (2013). https://doi.org/10.1016/j.jaap.2012.11.013

    Article  Google Scholar 

  22. Folgueras, M.B., Fernández, F.J., Ardila, C.R., Alonso, M., Lage, S.: Fast pyrolysis of Guadua angustifolia-Kunth. Energy Procedia 136, 60–65 (2017). https://doi.org/10.1016/j.egypro.2017.10.283

    Article  Google Scholar 

  23. Ghorbannezhad, P., Kool, F., Rudi, H., Ceylan, S.: Sustainable production of value-added products from fast pyrolysis of palm shell residue in tandem micro-reactor and pilot plant. Renew. Energy 145, 663–670 (2020). https://doi.org/10.1016/j.renene.2019.06.063

    Article  Google Scholar 

  24. Silveira-Junior, E.G., Perez, V.H., Justo, O.R., David, G.F., Simionatto, E., deOliveira, L.C.S.: Valorization of guava (Psidium guajava L.) seeds for levoglucosan production by fast pyrolysis. Cellulose (2020). https://doi.org/10.1007/s10570-020-03506-x

    Article  Google Scholar 

  25. Gudka, B., Jones, J.M., Lea-Langton, A.R., Williams, A., Saddawi, A.: A review of the mitigation of deposition and emission problems during biomass combustion through washing pre-treatment. J. Energy Inst. 89(2), 159–171 (2016). https://doi.org/10.1016/j.joei.2015.02.007

    Article  Google Scholar 

  26. Deng, L., Zhang, T., Che, D.: Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. Fuel Process. Technol. 106, 712–720 (2013). https://doi.org/10.1016/j.fuproc.2012.10.006

    Article  Google Scholar 

  27. Hu, Y., Wang, S., Wang, Q., He, Z., Lin, X., Xu, S., Ji, H., Li, Y.: Effect of different pretreatments on the thermal degradation of seaweed biomass. Proc. Combust. Inst. 36(2), 2271–2281 (2017). https://doi.org/10.1016/j.proci.2016.08.086

    Article  Google Scholar 

  28. SilveiraJunior, E.G., Simionatto, E., Perez, V.H., Justo, O.R., Zárate, N.A.H., Vieira, Md.C.: Potential of virginia-type peanut (Arachis hypogaea L.) as feedstock for biodiesel production. Ind. Crops Prod. 89, 448–454 (2016). https://doi.org/10.1016/j.indcrop.2016.04.050

    Article  Google Scholar 

  29. Liu, R., Liu, G., Yousaf, B., Abbas, Q.: Operating conditions-induced changes in product yield and characteristics during thermal-conversion of peanut shell to biochar in relation to economic analysis. J. Clean. Prod. 193, 479–490 (2018). https://doi.org/10.1016/j.jclepro.2018.05.034

    Article  Google Scholar 

  30. Wan, S., Zheng, N., Zhang, J., Wang, J.: Role of neutral extractives and inherent active minerals in pyrolysis of agricultural crop residues and bio-oil formations. Biomass Bioenergy 122, 53–62 (2019). https://doi.org/10.1016/j.biombioe.2019.01.010

    Article  Google Scholar 

  31. Fermanelli, C.S., Córdoba, A., Pierella, L.B., Saux, C.: Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: a comparative study. Waste Manag. 102, 362–370 (2020). https://doi.org/10.1016/j.wasman.2019.10.057

    Article  Google Scholar 

  32. Gurevich Messina, L.I., Bonelli, P.R., Cukierman, A.L.: Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells. Renew. Energy 114, 697–707 (2017). https://doi.org/10.1016/j.renene.2017.07.065

    Article  Google Scholar 

  33. CONAB, C.N.d.A.: Acompanhamento da Safra Brasileira-Grãos. In: SAFRA 2019/20-N. 4-Quarto levantamento, vol. V7, CONAB (Companhia Nacional de Abastecimento), Brasilia (2020)

  34. USDA, U.S.D.o.A.R.S.: World Agricultural Production. https://apps.fas.usda.gov/psdonline/circulars/production.pdf (2019). Accessed 07 Jan 2020

  35. AOCS, A.O.C.S.: Official methods and recommended practices of the AOCS. In: American Oil Chemists’ Society, Champaign (1998)

  36. Barber, S.T., Yin, J., Draper, K., Trabold, T.A.: Closing nutrient cycles with biochar—from filtration to fertilizer. J. Clean. Prod. 197, 1597–1606 (2018). https://doi.org/10.1016/j.jclepro.2018.06.136

    Article  Google Scholar 

  37. Prasai, T.P., Walsh, K.B., Bhattarai, S.P., Midmore, D.J., Van, T.T.H., Moore, R.J., Stanley, D.: Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces campylobacter load. PLoS ONE 11(4), e0154061 (2016). https://doi.org/10.1371/journal.pone.0154061

    Article  Google Scholar 

  38. Li, R., Zhang, Y., Deng, H., Zhang, Z., Wang, J.J., Shaheen, S.M., Xiao, R., Rinklebe, J., Xi, B., He, X., Du, J.: Removing tetracycline and Hg(II) with ball-milled magnetic nanobiochar and its potential on polluted irrigation water reclamation. J. Hazard. Mater. 384, 121095 (2020). https://doi.org/10.1016/j.jhazmat.2019.121095

    Article  Google Scholar 

  39. Sato, M.K., deLima, H.V., NoronhaCosta, A., Rodrigues, S., Mooney, S.J., Clarke, M., SilvaPedroso, A.J., deFreitasMaia, C.M.B.: Biochar as a sustainable alternative to açaí waste disposal in Amazon Brazil. Process Saf. Environ. Prot. 139, 36–46 (2020). https://doi.org/10.1016/j.psep.2020.04.001

    Article  Google Scholar 

  40. Perez, V.H., daSilva, N.R.F., SilveiraJunior, E.G., Rocha, D.C., Justo, O.R., David, G.F., Roman, D.C.C., LacerdaJr, V.L., Garcia-Perez, M.: Integrated process of biomass thermochemical conversion to obtain pyrolytic sugars for biofuels and bioproducts. In: Ingle, A.P., Chandel, A.K., daSilva, S.S. (eds.) Lignocellulosic Biorefining Technologies, pp. 285–311. Wiley, Hoboken (2020)

    Chapter  Google Scholar 

  41. Shafizadeh, F., Fu, Y.L.: Pyrolysis of cellulose. Carbohyd. Res. 29(1), 113–122 (1973). https://doi.org/10.1016/S0008-6215(00)82074-1

    Article  Google Scholar 

  42. Jarboe, L.R., Wen, Z., Choi, D., Brown, R.C.: Hybrid thermochemical processing: fermentation of pyrolysis-derived bio-oil. Appl. Microbiol. Biotechnol. 91(6), 1519–1523 (2011). https://doi.org/10.1007/s00253-011-3495-9

    Article  Google Scholar 

  43. Zhou, S., Mourant, D., Lievens, C., Wang, Y., Li, C.-Z., Garcia-Perez, M.: Effect of sulfuric acid concentration on the yield and properties of the bio-oils obtained from the auger and fast pyrolysis of Douglas Fir. Fuel 104, 536–546 (2013). https://doi.org/10.1016/j.fuel.2012.06.010

    Article  Google Scholar 

  44. Dobele, G., Dizhbite, T., Rossinskaja, G., Telysheva, G., Meier, D., Radtke, S., Faix, O.: Pre-treatment of biomass with phosphoric acid prior to fast pyrolysis: a promising method for obtaining 1,6-anhydrosaccharides in high yields. J. Anal. Appl. Pyrol. 68–69, 197–211 (2003). https://doi.org/10.1016/S0165-2370(03)00063-9

    Article  Google Scholar 

  45. Kumagai, S., Matsuno, R., Grause, G., Kameda, T., Yoshioka, T.: Enhancement of bio-oil production via pyrolysis of wood biomass by pretreatment with H2SO4. Biores. Technol. 178, 76–82 (2015). https://doi.org/10.1016/j.biortech.2014.09.146

    Article  Google Scholar 

  46. Persson, H., Kantarelis, E., Evangelopoulos, P., Yang, W.: Wood-derived acid leaching of biomass for enhanced production of sugars and sugar derivatives during pyrolysis: influence of acidity and treatment time. J. Anal. Appl. Pyrol. 127, 329–334 (2017). https://doi.org/10.1016/j.jaap.2017.07.018

    Article  Google Scholar 

  47. Montoya, J.I., Chejne-Janna, F., Garcia-Pérez, M.: Fast pyrolysis of biomass: a review of relevant aspects: part I: parametric study. DYNA 82, 239–248 (2015)

    Article  Google Scholar 

  48. Jakab, E.: Chapter 3—Analytical techniques as a tool to understand the reaction mechanism. In: Pandey, A., Bhaskar, T., Stöcker, M., Sukumaran, R.K. (eds.) Recent Advances in Thermo-Chemical Conversion of Biomass, pp. 75–108. Elsevier, Boston (2015)

    Chapter  Google Scholar 

  49. Liaw, S.-S., Justo, O.R., Perez, V.H., Zhou, S., Garcia-Perez, M.: Ozonation of pyrolytic aqueous phase: Changes in the content of phenolic compounds and color. Chem. Eng. Technol. 39(10), 1828–1834 (2016). https://doi.org/10.1002/ceat.201500420

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the following Brazilian agencies for financial support: Foundation Carlos Chagas Filho Research Support from the State of Rio de Janeiro (FAPERJ—Grant No.: E-26/202.457/2019 and E-26/202.688/2019), Coordination for the Improvement of Higher-Level Personnel-Brazil (CAPES Finance Code 001), The National Council for Scientific and Technological Development (CNPq—Process no. 433235/2016-0), The Grants Program of the Estácio de Sá University for Research Productivity and Foundation Research Support from the State of Minas Gerais (FAPEMIG). We also thank Professor Lincoln Carlos Silva de Oliveira, from the Chemistry Institute at UFMS (Brazil), for his support in the thermogravimetric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Haber Perez.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silveira Junior, E.G., da Silva, N.R.F., Perez, V.H. et al. Fast Pyrolysis of Peanut Husk Agroindustrial Waste: Intensification of Anhydro Sugar (Levoglucosan) Production. Waste Biomass Valor 12, 5573–5585 (2021). https://doi.org/10.1007/s12649-021-01403-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-021-01403-3

Keywords

Navigation