Skip to main content

Advertisement

Log in

Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

One of the uncertainties in the field of carbon dioxide capture and storage (CCS) is caused by the parameterization of geochemical models. The application of geochemical models contributes significantly to calculate the fate of the CO2 after its injection. The choice of the thermodynamic database used, the selection of the secondary mineral assemblage as well as the option to calculate pressure dependent equilibrium constants influence the CO2 trapping potential and trapping mechanism. Scenario analyses were conducted applying a geochemical batch equilibrium model for a virtual CO2 injection into a saline Keuper aquifer. The amount of CO2 which could be trapped in the formation water and in the form of carbonates was calculated using the model code PHREEQC. Thereby, four thermodynamic datasets were used to calculate the thermodynamic equilibria. Furthermore, the equilibrium constants were re-calculated with the code SUPCRT92, which also applied a pressure correction to the equilibrium constants. Varying the thermodynamic database caused a range of 61% in the amount of trapped CO2 calculated. Simultaneously, the assemblage of secondary minerals was varied, and the potential secondary minerals dawsonite and K-mica were included in several scenarios. The selection of the secondary mineral assemblage caused a range of 74% in the calculated amount of trapped CO2. Correcting the equilibrium constants with respect to a pressure of 125 bars had an influence of 11% on the amount of trapped CO2. This illustrates the need for incorporating sensitivity analyses into reaction pathway modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen DE, Strazisar BR, Soong Y, Hedges SW (2005) Modeling carbon dioxide sequestration in saline aquifers: significance of elevated pressures and salinities. Fuel Process Tech 86:1569–1580

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2007) Geochemistry groundwater and pollution, 2nd edn. A.A. Balkema Publishers Leiden, London, p 649

    Google Scholar 

  • Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modelling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307:974–1008

    Article  Google Scholar 

  • Auqué LF, Acero P, Gimeno MJ, Gómez JB, Asta MP (2009) Hydrogeochemical modeling of a thermal system and lessons learnt for CO2 geologic storage. Chem Geol 268:324–336

    Article  Google Scholar 

  • Bateman K, Turner G, Pearce JM, Noy DJ, Birchall D, Rochelle CA (2005) Large-scale column experiment: study of CO2, porewater, rock reactions and model test case. Oil Gas Sci Tech—Rev IFP 60(1):161–175

    Article  Google Scholar 

  • Bénézeth P, Palmer DA, Anovitz LM, Horita J (2007) Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: implications for mineral trapping of CO2. Geochim Cosmochim Acta 71(18):4438–4455. doi:10.1016/j.gca.2007.07.003

    Article  Google Scholar 

  • Bertier P, Swennen R, Laenen B, Lagrou D, Dreesen R (2006) Experimental identification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium). J Geochem Explor 89(1–3):10–14. doi:10.1016/j.gexplo.2005.11.005

    Article  Google Scholar 

  • Cantucci B, Montegrossi G, Vaselli O, Tassi F, Quattrocchi F, Perkins EH (2009) Geochemical modeling of CO2 storage in deep reservoirs: the Weyburn Project (Canada) case study. Chem Geol 265(1–2):181–197

    Article  Google Scholar 

  • Coelha LMA (2010) Synthese von Dawsonit und Stabilitätsuntersuchungen unter superkritischen Bedingungen. Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn

    Google Scholar 

  • Duan Z, Møller N, Weare JH (1992) An equation of state for the CH4–CO2–H2O system: I. Pure systems from 0 to 1000°C and 0 to 8000 bars. Geochim Cosmochim Acta 56(7):2605–2617. doi:10.1016/0016-7037(92)90347-L

    Article  Google Scholar 

  • Fu Q, Lu P, Konishi H, Dilmore R, Xu H, Seyfried WEJ, Zhu C (2009) Coupled alkali-feldspar dissolution and secondary mineral precipitation in batch system: 1. New experiments at 200°C and 300 bars. Chem Geol 258:125–135

    Article  Google Scholar 

  • Gaus I, Azaroual M, Czernichowski-Lauriol I (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chem Geol 217(3–4):319–337. doi:10.1016/j.chemgeo.2004.12.016

    Article  Google Scholar 

  • Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int J Greenh Gas Control 2(4):605–625

    Article  Google Scholar 

  • Gundogan O, Mackay E, Todd A (2011) Comparison of numerical codes for geochemical modelling of CO2 storage in target reservoirs. Chem Eng Res Design 89:1805–1816

    Google Scholar 

  • Gunter WD, Perkins EH, Hutcheon I (2000) Aquifer disposal of acid gases: modelling of water-rock reactions for trapping of acid wastes. Appl Geochem 15(8):1085–1095. doi:10.1016/S0883-2927(99)00111-0

    Article  Google Scholar 

  • Haase C, Dethlefsen F, Ebert M, Dahmke A (2010) Uncertainties in hydrogeochemical modelling of water-mineral interaction in the field of CO2-Storage; Second EAGE CO2 Geological Storage Workshop, Berlin, 11–12 March 2010

  • Helgeson HC, Delany JM, Nesbitt HW, Bird DK (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci 278-A

  • Hitchon B (ed) (1996) Aquifer disposal of carbon dioxide. Geoscience Publishing Ltd, Sherwood Park

    Google Scholar 

  • Hummel W, Berner U, Curti E, Pearson FJ, Thoenen T (eds) (2002) Nagra/PSI Chemical Thermodynamic Data Base 01/01. Universal Publishers, Parkland

    Google Scholar 

  • IPCC (2007) Special Report on Carbon Dioxide Capture and Storage. Special Report of the Intergovernmental Panel on Climate Change—Summary for Policymakers and Technical Summary. Intergovernmental Panel on Climate Change

  • Jensen DE, Jones GA (1972) Flame-photometric determination of the standard enthalpies of formation of Al(OH)2 and AlO. J Chem Soc Faraday Trans 1:259–268

    Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HH (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000°C. Comput Geosci 18(7):899–947. doi:10.1016/0098-3004(92)90029-Q

    Article  Google Scholar 

  • Johnson JW, Nitao JJ, Knauss KG (2004) Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning. Geol Soc Lond 233:107–128

    Article  Google Scholar 

  • Kaszuba JPT, Janecky DR, Snow MG (2005) Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository. Chem Geol 217(3–4):277–293. doi:10.1016/j.chemgeo.2004.12.014

    Article  Google Scholar 

  • Knauss KG, Johnson JW, Steefel CI (2005) Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chem Geol 217(3–4):339–350. doi:10.1016/j.chemgeo.2004.12.017

    Article  Google Scholar 

  • Kump LR, Brantley SL, Arthur MA (2000) Chemical weathering, atmospheric CO2 and climate. Annu Rev Earth Planet Sci 28:611–667

    Article  Google Scholar 

  • Lu P, Fu Q, Seyfried WE, Hereford A, Zhu C (2011) Navajo Sandstone-brine-CO2 interaction: implications for geological carbon sequestration. Environ Earth Sci 62:101–118. doi:10.1007/s12665-010-0501-y

    Article  Google Scholar 

  • Marini L (2007) Geological sequestration of carbon dioxide, vol 11. Developments on Geochemistry Elsevier, Amsterdam

  • Nitzsche O, Meinrath G, Merkel B (2000) Database uncertainty as a limiting factor in reactive transport prognosis. J Contam Hydrol 44:223–237

    Article  Google Scholar 

  • Palandri JL, Reed MH (2001) Reconstruction of in situ composition of sedimentary formation waters. Geochim Cosmochim Acta 65(11):1741–1767

    Article  Google Scholar 

  • Parkhurst DL (1990) Ion association models and mean activity coefficients of various salts. In: Melchior DC and Basset RL (eds) Chemical modeling of aqueous systems II. ACS Symp. Ser., vol 416. pp 30–43

  • Parkhurst DL, Appelo CAJ (1999) PHREEQC (Version 2). DOE, Denver, CO

  • Pham VTH, Lu P, Aargaard P, Zhu C, Hellevang H (2011) On the potential of CO2-water-rock interactions for CO2 storage using a modified kinetic model. Int J Greenh Gas Control 5(4):1002–1015

    Google Scholar 

  • Pitzer KS (1979) Theory-ion interaction approach. In: Pytkowicz RM (ed) Ancivity coefficients in electrolyte solutions, vol 1. CRC Press, Inc, Boca Raton, pp 157–208

    Google Scholar 

  • Seibt A, Kellner T, Hoth P (1997) Teil B: Geowissenschaftliche Erfahrungen aus dem Betrieb geothermischer Heizzentralen Norddeutschlands. 8. Charakteristik der geothermischen Heizzentralen (GHZ) in Mecklenburg-Vorpommern. Geowissenschaftliche Bewertungsgrundlagen zur Nutzung hydrogeothermaler Ressourcen in Norddeutschland; STR97/15 Geothermie Report 97-1. GeoForschungsZentrum Potsdam, Potsdam

  • Shiraki R, Dunn TL (2000) Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA. Appl Geochem 15:265–279

    Article  Google Scholar 

  • Stefansson A (2001) Dissolution of primary minerals of basalt in natural waters: I. Calculation of mineral solubilities from 0 to 350°C. Chem Geol 172(3-4):225–250

    Article  Google Scholar 

  • Stoica G, Pérez-Ramírez J (2010) Stability and inter-conversion of synthetic dawsonites in aqueous media. Geochim Cosmochim Acta 74:7048–7058

    Article  Google Scholar 

  • Tagirov B, Schott J (2001) Aluminum speciation in crustal fluids revisited. Geochim Cosmochim Acta 65(21):3965–3992

    Article  Google Scholar 

  • Thibeau S, Nghiem LX, Ohkuma H (2007) A modeling study of the role of selected minerals in enhancing CO2 mineralization during CO2 Aquifer Storage. Soc Petroleum Eng (SPE Int):906–922

  • Weibel R, Friis H (2004) Opaque minerals as keys for distinguishing oxidising and reducing diagenetic conditions in the Lower Triassic Bunter Sandstone, North German Basin. Sed Geol 169:129–149

    Article  Google Scholar 

  • Wenming Z, Qiyuan C, Xinmin C (1994) Determination of the standard molar enthalpy of formation of the ion Al(OH)4-(aq). J Chem Thermodyn 26:205–210

    Article  Google Scholar 

  • Wigand M, Carey JW, Schütt H, Spangenberg E, Erzinger J (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers. Appl Geochem 23:2735–2745

    Article  Google Scholar 

  • Wilkinson M, Haszeldine RS, Fallick AE, Odling N, Stoker SJ, Gatliff RW (2009) CO2-mineral reaction in a natural analogue for CO2 storage-implications for modeling. J Sed Res 79:486–494

    Article  Google Scholar 

  • Worden RH (2006) Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: a natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction. Marine Petroleum Geol 23:61–77

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem Geol 217(3–4):295–318. doi:10.1016/j.chemgeo.2004.12.015

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K, Yamamoto H (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chem Geol 242(3–4):319–346. doi:10.1016/j.chemgeo.2007.03.022

    Article  Google Scholar 

  • Zerai B, Saylor BZ, Matisoff G (2006) Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Appl Geochem 21(2):223–240

    Article  Google Scholar 

  • Zhu C, Lu P (2009) Alkali feldspar dissolution and secondary mineral precipitation in batch systems: 3. Saturation states of product minerals and reaction paths. Geochim Cosmochim Acta 73:3171–3200

    Article  Google Scholar 

Download references

Acknowledgments

This study is being funded by the German Federal Ministry of Education and Research (BMBF), EnBW Energie Baden-Württemberg AG, E.ON Energie AG, E.ON Gas Storage AG, RWE Dea AG, Vattenfall Europe Technology Research GmbH, Wintershall Holding AG and Stadtwerke Kiel AG as part of the CO2-MoPa joint project in the framework of the Special Program GEOTECHNOLOGIEN. Dr. Dedong Li is acknowledged for providing a tool for re-calculating thermodynamic data using the SUPCRT92 approach and Kristin T. Dethlefsen is acknowledged for language corrections.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Dethlefsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 36.9 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dethlefsen, F., Haase, C., Ebert, M. et al. Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65, 1105–1117 (2012). https://doi.org/10.1007/s12665-011-1360-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-011-1360-x

Keywords

Navigation