Skip to main content
Log in

Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation

  • Special Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Injection of CO2 into gas reservoirs for CO2-enhanced gas recovery will initiate a series of geochemical reactions between pore fluids and solid phases. To simulate these conditions, the coupled multiphase flow and multicomponent reactive transport simulator OpenGeoSys-ChemApp was extended to take into account the kinetic nature of fluid/mineral reactions. The coupled simulator is verified successfully for the correctness and accuracy of the implemented kinetic reactions using benchmark simulations. Based on a representative geochemical model developed for the Altensalzwedel compartment of the Altmark gas field in northeastern Germany (De Lucia et al. this issue), the code is applied to study reactive transport following an injection of CO2, including dissolution and precipitation kinetics of mineral reactions and the resulting porosity changes. Results from batch simulations show that injection-induced kinetic reactions proceed for more than 10,000 years. Relevant reactions predicted by the model comprise the dissolution of illite, precipitation of secondary clays, kaolinite and montmorillonite, and the mineral trapping of CO2 as calcite, which starts precipitating in notable quantities after approximately 2,000 years. At earlier times, the model predicts only small changes in the mineral composition and aqueous component concentrations. Monitoring by brine sampling during the injection or early post-injection period therefore would probably not be indicative of the geochemical trapping mechanisms. One-dimensional simulations of CO2 diffusing into stagnant brine show only a small influence of the transport of dissolved components at early times. Therefore, in the long term, the system can be approximated reasonably well by kinetic batch modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307:974–1008

    Article  Google Scholar 

  • Bachu S, Gunter WE, Perkins EH (1994) Aquifer disposal of CO2: Hydrodynamic and mineral trapping. Energy Convers Manag 35:69–279

    Article  Google Scholar 

  • Bauer S, Beyer C, Kolditz O (2006) Assessing measurement uncertainty of first-order degradation rates in heterogeneous aquifers. Water Resour Res 42:W01420. doi:10.1029/2004WR003878

    Article  Google Scholar 

  • Bear J, Bachmat Y (1990) Introduction to modeling of transport phenomena in porous media. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Beyer C, Bauer S, Kolditz O (2006) Uncertainty assessment of contaminant plume length estimates in heterogeneous aquifers. J Contam Hydrol 87:73–95

    Article  Google Scholar 

  • Beyer C, Konrad W, Rügner H, Bauer S, Liedl R, Grathwohl P (2009) Model based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams. Waste Manag 29:839–850

    Article  Google Scholar 

  • Böttcher N, Singh AK, Kolditz O, Liedl R (2011) Non-isothermal, compressible gas flow for the simulation of an enhanced gas recovery application. J Comput Appl Math (published online). doi:10.1016/j.cam.2011.11.013

    Google Scholar 

  • Brantley S, Kubicki J, White AF (2008) Kinetics of water–rock interaction. Springer, New York

    Book  Google Scholar 

  • Cash JR, Karp AH (1990) A variable order Runge–Kutta method for initial value problems with rapidly varying right-hand sides. ACM Transact Math Softw 16:201–222

    Article  Google Scholar 

  • De Lucia M, Bauer S, Beyer C, Kühn M, Nowak T, Pudlo D, Reitenbach V, Stadler S. Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part I: from experimental data to a reference geochemical model. Environ Earth Sci (this issue)

  • Dethlefsen F, Haase C, Ebert M, Dahmke A (2012) Uncertainties of geochemical modeling during CO2 sequestration applying batch equilibrium calculations. Environ Earth Sci 65:1105–1117

    Article  Google Scholar 

  • Duan Z, Sun R (2003) An improved model calculating CO2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chem Geol 193:253–271

    Article  Google Scholar 

  • Engesgaard P, Kipp KL (1992) A geochemical transport model for redox-controlled movement of mineral fronts in groundwater flow systems: a case of nitrate removal by oxidation of pyrite. Water Resour Res 28:2829–2843. doi:10.1029/92WR01264

    Article  Google Scholar 

  • Fredd CN, Fogler HS (1998) Influence of transport and reaction on wormhole formation in porous media. AIChE J 44:1933–1949

    Article  Google Scholar 

  • Graupner B, Li D, Bauer S (2011) The coupled simulator ECLIPSE–OpenGeoSys for the simulation of CO2 storage in saline formations. Energy Procedia 4:3794–3800

    Article  Google Scholar 

  • Köhler SJ, Dufaud F, Oelkers EO (2003) An experimental study of illite dissolution kinetics as a function of pH from 1.4 to 12.4 and temperature from 5 to 50 °C. Geochim Cosmochim Acta 67:3583–3594

    Article  Google Scholar 

  • Kolditz O, Bauer S (2004) A process-oriented approach to computing multi-field problems in porous media. J Hydroinformatics 6:225–244

    Google Scholar 

  • Kolditz O, Shao H (2009) Developer Benchmark Book on THMC Components of Numerical Codes GeoSys/Rockflow V. 4.9. Helmholtz Centre for Environmental Research (UFZ), Leipzig

  • Kolditz O, Bauer S, Bilke L, Böttcher N, Delfs JO, Fischer T, Görke UJ, Kalbacher T, Kosakowski G, McDermott CI et al (2012) OpenGeoSys: an open-source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Environ Earth Sci (published online). doi:10.1007/s12665-012-1546-x

  • Kolditz O, Bauer S, Beyer C, Böttcher N, Dietrich P, Görke UJ, Kalbacher T, Park CH, Sauer U, Schütze C, Singh A, Taron J, Wang W, Watanabe N. Technical paper: a systematic for CO2 benchmarking. Environ Earth Sci (this issue). doi:10.1007/s12665-012-1656-5

  • Kühn M, Förster A, Großmann J, Meyer R, Reinick K, Schäfer D, Wendel H (2011) CLEAN: preparing for a CO2-based enhanced gas recovery in a depleted gas field in Germany. Energy Procedia 4:5520–5526

    Article  Google Scholar 

  • Kühn M, et al. CLEAN: CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany): project overview. Environ Earth Sci (this issue)

  • Lagneau V, van der Lee J (2010) Operator-splitting-based reactive transport models in strong feedback of porosity change: The contribution of analytical solutions for accuracy validation and estimator improvement. J Contam Hydrol 112:118–129

    Article  Google Scholar 

  • Lasaga AC (1995) Fundamental approaches in describing mineral dissolution and precipitation rates. In: White AF, Brantley SL (eds) Chemical weathering rates of silicates minerals—reviews in mineralogy, vol 31. BookCrafters, Chelsea

    Google Scholar 

  • Lasaga AC, Soler JM, Ganor J, Burch TE, Nagy KL (1994) Chemical weathering rate laws and global geochemical cycles. Geochim Cosmochim Acta 58:2361–2386

    Article  Google Scholar 

  • Li D, Bauer S (2009) Development of a coupled transport and geochemical reaction code and a first application to CO2 sequestration. In: Huber F, Lützenkirchen J, Pfingsten W, Tiffreau C (eds) Proceedings of the Workshop TRePro II. 18.-19.5.2009, Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft, Wissenschaftliche Berichte FZKA 7482

  • Li D, Graupner B, Bauer S (2011) A method for calculating the liquid density for the CO2–H2O–NaCl system under CO2 storage condition. Energy Procedia 4:3817–3824

    Article  Google Scholar 

  • Moog HC, Mönig H (2010) Erstellung von Parameterdateien für die Verwendung mit CHEMAPP und PHREEQC. Final Report to BGR project 45-4500046190, GRS, Braunschweig

  • Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water–mineral interaction kinetics for application to geochemical modelling. US Geol Survey Water-Resources Investigations Report 04-1068

  • Park CH, Beyer C, Bauer S, Kolditz O (2008) Using global node-based velocity in random walk particle tracking in variably saturated porous media: application to contaminant leaching from road constructions. Env Geol 55:1755–1766

    Google Scholar 

  • Petersen S, Hack K (2007) The thermochemistry library ChemApp and its applications. Int J Mat Res 98(10):935–945

    Article  Google Scholar 

  • Pudlo D, Reitenbach V, Albrecht D, Ganzer L, Ulrich G, Wienand J, Kohlhepp B, Gaupp R. The impact of diagenetic fluid–rock reactions on Rotliegend sandstone composition and petrophysical properties (Altmark area, central Germany). Environ Earth Sci (this issue)

  • Rozalen M, Huertas FJ, Brady PV (2009) Experimental study of the effect of pH and temperature on the kinetics of montmorillonite dissolution. Geochim Cosmochim Acta 73:3752–3766

    Article  Google Scholar 

  • Shao HB, Dmytrieva SV, Kolditz O, Kulik DA, Pfingsten W, Kosakowski G (2009) Modeling reactive transport in non-ideal aqueous-solid solution system. Appl Geochem 24:1287–1300

    Article  Google Scholar 

  • Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Am J Sci 294:529–592

    Article  Google Scholar 

  • Szymczak P, Ladd AJC (2011) Instabilities in the dissolution of a porous matrix. Geophys Res Lett 38:L07403. doi:10.1029/2011GL046720

    Article  Google Scholar 

  • Wang W, Kolditz O (2007) Object-oriented finite element analysis of thermo-hydro-mechanical (THM) problems in porous media. Int J Numer Methods Eng 69:162–201

    Article  Google Scholar 

  • Xie M, Bauer S, Kolditz O, Nowak T, Shao H (2006) Non-isothermal multi-component reactive transport in partially saturated porous media: Application to bentonite. J Contam Hydrol 83:122–147

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers. Appl Geochem 19:917–936

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K (2005) Mineral sequestration of carbon dioxide in a sandstone–shale system. Chem Geol 217:295–318

    Article  Google Scholar 

  • Xu T, Apps JA, Pruess K, Yamamoto H (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation. Chem Geol 242:319–346

    Article  Google Scholar 

  • Xu T, Kharaka YK, Doughty C, Freifeld BM, Daley TM (2010) Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot. Chem Geol 271:153–164

    Article  Google Scholar 

  • Zerai B, Saylor BZ, Matisoff G (2006) Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio. Appl Geochem 21:223–240

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the joint R&D project CLEAN, sponsored by the German Federal Ministry of Education and Research (BMBF) within the framework of the “GEOTECHNOLOGIEN” program (publication number GEOTECH-1993). We gratefully acknowledge the funding of our work by the BMBF (grants 03G0704 J (CAU) and 03G0704A (GFZ)). Furthermore, we would like to thank GDF Suez E&P Deutschland GmbH for research collaboration and the CLEAN project coordination and management. Last, but not least, we are grateful to the two anonymous referees for their constructive comments and suggestions made during the review process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Beyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beyer, C., Li, D., De Lucia, M. et al. Modelling CO2-induced fluid–rock interactions in the Altensalzwedel gas reservoir. Part II: coupled reactive transport simulation. Environ Earth Sci 67, 573–588 (2012). https://doi.org/10.1007/s12665-012-1684-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-012-1684-1

Keywords

Navigation