Skip to main content

Advertisement

Log in

Effect of water on carbonation of mineral aerosol surface models of kaolinite: a density functional theory study

  • Thematic Issue
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Gas–solid interfacial phenomena always play a significant role in the multiphase process in atmospheric chemistry. The mineral aerosols have desirable interfacial reactivity on the carbonation of kaolinite. In addition, carbonation of kaolinite may play a role in carbon dioxide capture. It is not well-known about the mechanisms of this reaction. In this paper, the carbonation of kaolinite cluster models with or without water on the atomic scale is studied. We simulate the corresponding reaction paths and accurately calculate the transition states with the homologous enthalpies via using the density functional theory (DFT) method. The study shows that the reaction barriers are lowered down seriously with the existence of water. In addition, water can help stabilize the reaction regions thereby firming the structure of carbonated product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen JP, Parker SC, Price DW (2009) Atomistic simulation of the surface carbonation of calcium and magnesium oxide surfaces. J Phys Chem C 113:8320–8328

    Article  Google Scholar 

  • Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Environ Combust Sci 34:254–273

    Article  Google Scholar 

  • Bai MX, Sun JP, Song KP, Reinicke KM, Teodoriu C (2015) Evaluation of mechanical well integrity during CO2 underground storage. Environ Earth Sci. doi:10.1007/s12665-015-4157-5

    Google Scholar 

  • Baltrusaitis J, Grassian VH (2010) Carbonic acid formation from reaction of carbon dioxide and water coordinated to Al(OH)3: a quantum chemical study. J Phys Chem A 114:2350–2356

    Article  Google Scholar 

  • Baltrusaitis J, Jensen JH, Grassian VH (2006) FTIR spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3. J Phys Chem B 110:12005–12016

    Article  Google Scholar 

  • Baltrusaitis J, Schuttlefield J, Zeitler E, Jensen J, Grassian (2007) Surface reactions of carbon dioxide at the adsorbed water-oxide interface. V J Phys Chem C 111(40):14870–14880

    Article  Google Scholar 

  • Beck AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Article  Google Scholar 

  • Bian HS, Zender CS (2003) Mineral dust and global tropospheric chemistry: relative roles of photolysis and heterogeneous uptake. J Geophys Res Atmos 108:4672

    Article  Google Scholar 

  • Bish DL (1993) Rietveld refinement of the kaolinite structure. Clays Clay Miner 41:738

    Article  Google Scholar 

  • Brown CJ, Poiencot BK, Hudyma N, Albright B, Esposito RA (2014) An assessment of geologic sequestration potential in the panhandle of Florida USA. Environ Earth Sci 71(2):793–806

    Article  Google Scholar 

  • Collins SE, Baltanas MA, Bonivardi AL (2004) An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3. J Catal 226:410–421

    Article  Google Scholar 

  • Couling DJ, Das U, Green WH (2012) Analysis of hydroxide sorbents for CO2 capture from warm syngas. Ind Eng Chem Res 51(41):13473–13481

    Article  Google Scholar 

  • Damen K, Faaij A, Van Bergen F, Gale J, Lysen E (2005) Identification of early opportunities for CO2 sequestration—worldwide screening for CO2-EOR and CO2-ECBM projects. Energy 30(10):1931–1952

    Article  Google Scholar 

  • El-Sayed K, Heiba ZK, Abdel-Rahman (1990) Crystal structure analysis and refinement of Kalabsha kaolinite (Al2Si2O5(OH)4). A M Cryst Res Technol 25:305–312

    Article  Google Scholar 

  • Fricker KJ, Park Ah-HA (2013) Effect of H2O on Mg(OH)2 carbonation pathways for combined CO2 capture and storage. Chem Eng Sci 100:332–341

    Article  Google Scholar 

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski V G, Montgomery JA, Jr T, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniel A D, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammir, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head GordonM, Replogle ES, Pople J (2005) A Gaussian 03, Revision D.01, Gaussian, Inc., Pittsburgh

  • Funk Andreas, Trettin HF, Reinhard (2013) DFT Study on the Effect of Water on the Carbonation of Portlandite. Ind Eng Chem Res 52:2169–2173

    Article  Google Scholar 

  • Gao HW, Pishney S, Janik MJ (2013) First principles study on the adsorption of CO2 and H2O on the K2CO3 (001) surface. Surf Sci 609:140–146

    Article  Google Scholar 

  • Giammar DE, Bruant RG, Peters CA Jr (2005) Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide. Chem Geol 217:257–276

    Article  Google Scholar 

  • Gonzalez C, Schlegel HB (1989) An improved algorithm for reaction path following. J Chem Phys 90:2154

    Article  Google Scholar 

  • Gonzalez C, Schlegel HB (1990) Reaction path following in mass-weighted internal coordinates. J Phys Chem 94:5523–5527

    Article  Google Scholar 

  • Hehre WJ, Ditchfield R, Pople JA (1972) Self—consistent molecular orbital methods. XII. Further extensions of gaussian—type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56:2257–2261

    Article  Google Scholar 

  • Hornebecq V, Knöfel C, Boulet P, Kuchta B, Llewellyn PL (2011) Adsorption of carbon dioxide on mesoporous zirconia: microcalorimetric measurements, adsorption isotherm modeling, and density functional theory calculations. J Phys Chem C 115:10097–10103

    Article  Google Scholar 

  • Hou ZM, Gou Y, Taron J, Gorke UJ, Kolditz O (2012) Thermo-hydro-mechanical modeling of carbon dioxide injection for enhanced gas-recovery (CO2-EGR): a benchmarking study for code comparison Environ. Earth Sci 67(2):549–561

    Article  Google Scholar 

  • Hu HX, Li XC, Fang ZM, Wei N, Li QS (2010) Small-molecule gas sorption and diffusion in coal: molecular simulation. Energy 35:2939–2944

    Article  Google Scholar 

  • Hur TB, Baltrus JP, Howard BH, Harbert WP, Romanov VN (2013) Carbonate formation in Wyomingmontmorillonite under high pressure carbon dioxide. Int J Greenh Gas Control 13:149–155

    Article  Google Scholar 

  • Knöfel C, Hornebecq V, Llewellyn PL (2008) Microcalorimetric investigation of high-surface-area mesoporoustitania samples for CO2 adsorption. Langmuir 24(15):7963–7969

    Article  Google Scholar 

  • Kvamme B, Kuznetsova T, Kivelæ PH (2012) Adsorption of water and carbon dioxide on hematite and consequences for possible hydrate formation. Phys Chem Chem Phys 14:4410–4424

    Article  Google Scholar 

  • Kwon S, Fan M, Dacosta HFM, Russell AG, Tsouris C (2011) Reaction kinetics of CO2 carbonation with Mg-rich minerals. J Phys Chem A 115:7638–7644

    Article  Google Scholar 

  • Lackner KS (2002) Carbonate chemistry for sequestering fossil carbon. Annu Rev Energy Environ 27(1):193–232

    Article  Google Scholar 

  • Lackner KS, Wendt CH, Butt DP, Joyce EL, Sharp DH (1995) Carbon dioxide disposal in carbonate minerals. Energy 20(11):1153–1170

    Article  Google Scholar 

  • Lackner KS, Butt DP, Wendt CH (1997) Progress on binding CO2 in mineral substrates. Energy Convers Manag 38:S259–S264

    Article  Google Scholar 

  • Liu HJ, Hou ZM, Li XC, Wei N, Tan X, Were P (2015a) A preliminary site selection system for CO2-AGES project and its application in China. Environ Earth Sci. doi:10.1007/s12665-015-4249-2

    Google Scholar 

  • Liu HJ, Hou ZM, Were P, Sun XL, Gou Y (2015b) Numerical studies on CO2 injection—brine extraction process in a low-medium temperature reservoir system. Environ Earth Sci. doi:10.1007/s12665-015-4086-3

    Google Scholar 

  • McGrail BP, Schaef HT, Ho AM, Chien YJ, Dooley JJ, Davidson CL (2006) Potential for Carbon Dioxide Sequestration in Flood Basalts. J Geophys Res Solid Earth 111(B12):201

    Article  Google Scholar 

  • Michalkova Scott Andrea, Michele Dawley M, Orlando Thomas M, Hill Frances C, Jerzy Leszczynski (2012) Theoretical Study of the Roles of Na+ and water on the adsorption of formamide on kaolinite surfaces. J Phys Chem C 116:23992–24005

    Article  Google Scholar 

  • Mikkelsen M, Jorgensen M, Krebs FC (2010) Theteraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ Sci 3(1):43–81

    Article  Google Scholar 

  • Mitiku AddisalemB, Bauer S (2013) Optimal use of a dome-shaped anticline structure for CO2 storage: a case study in the North German sedimentary basin. Environ Earth Sci. 70(8):3661–3673

    Article  Google Scholar 

  • Nikulshina V, Gálvez M, Steinfeld A (2007) Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2−CaCO3−CaO solar thermochemical cycle. Chem Eng J 129(1–3):75–83

    Article  Google Scholar 

  • Olajire, Abass A (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109:364–392

    Article  Google Scholar 

  • Pan Yunxiang, Liu Changjun, Ge Qingfeng (2008) Adsorption and protonation of CO2 on partially hydroxylated g-Al2O3 surfaces: a DFT study. Langmuir 24:12410–12419

    Article  Google Scholar 

  • Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  • Pulido A, Nachtigall P, Zukal A, Domínguez I, Čejka J (2009) Adsorption of CO2 on sodium-exchanged ferrierites: the bridged CO2 complexes formed between two extra framework cations. J Phys Chem C 113:2928–2935

    Article  Google Scholar 

  • Fang Qinhua, Huang Shiping, Wang Wenchuan (2005) Intercalation of dimethyl sulphoxide in kaolinite: molecular dynamics simulation study. Chemical Phsics Letters 411:233–237

    Article  Google Scholar 

  • Shih S-M, Ho C-S, Song Y-S, Lin J-P (1999) Kinetics of the reaction of Ca(OH)2 with CO2 at low temperature. Ind Eng Chem Res 38(4):1316–1322

    Article  Google Scholar 

  • Pan Shu-Yuan, Chang EE, Chiang Pen-Chi (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791

    Google Scholar 

  • Sorescu DC, Lee J, Al-Saidi WA, Jordan KD (2012) Coadsorption properties of CO2 and H2O on TiO2 rutile (110): a dispersion corrected DFT study. J Chem Phys 137(7):74704

    Article  Google Scholar 

  • Tai JR, Ge QF, Davis RJ, Neurock M (2004) Adsorption of CO2 on model surfaces of cesium oxides determined from first principles. J Phys Chem B 108:16798–16805

    Article  Google Scholar 

  • Wang B, Cao ZX (2013) How water molecules modulate the hydration of CO2 in water solution: insight from the cluster-continuum model calculations. J Comput Chem 34(5):372–378

    Article  Google Scholar 

  • Wang SG, Liao XY, Cao DB, Huo CF, Li YW, Wang JG, Jiao HJ (2007) Factors controlling the interaction of CO2 with transition metal surfaces. J Phys Chem C 111:16934–16940

    Article  Google Scholar 

  • Wu H, Zhang N, Cao Z, Wang H, Hong S (2012) The adsorption of CO2, H2CO3, HCO3 and CO3 2− on Cu2O (111) surface: first-principles study. Int J Quantum Chem 112(12):2532–2540

    Article  Google Scholar 

  • Xie HP (2010a) CO2 storage and climate change (in Chinese). Sci Technol Rev 28(18):3

    Google Scholar 

  • Xie HP (2010b) Developing low-carbon technology and promoting green economy (in Chinese). Energy China 32(9):5–10

    Google Scholar 

  • Xie HP, Liu H, Wu G (2012a) Simultaneous recovery of national resources and mineralization of CO2: a new CCU method (in Chinese). Energy China 34(10):15–18

    Google Scholar 

  • Xie HP, Xie LZ, Wang YF, Zhu JH, Liang B, Ju Y (2012b) CCU: a more feasible and economic strategy than CCS for reducing CO2 emissions (in Chinese). Sichuan Univ Eng Sci 44(4):1–5

    Google Scholar 

  • Xie HP, Wang YF, Ju Y, Liang B, Zhu JH, Zhang R, Xie LZ, Liu T, Zhou XG, Zeng HM, Li C, Lu HF (2013) Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull 58(1):128–132

    Article  Google Scholar 

  • Yang ZZ, He LN, Gao J, Liu AH, Yu B (2012) Carbon dioxide utilization with C-N bond formation: carbon dioxide capture and subsequent conversion. Energy Environ Sci 5:6602–6639

    Article  Google Scholar 

  • Ye JY, Liu CJ, Ge QF (2012) DFT study of CO2 adsorption and hydrogenation on the In2O3 surface. J Phys Chem C 116:7817–7825

    Article  Google Scholar 

  • Yu JM, Balbuena PB (2013) Water effects on postcombustion CO2 capture in Mg-MOF-74. J Phys Chem C 117:3383–3388

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant Nos. 51254002 and 21336004) and the National Basic Research Program of China (Grant No. 2013BAC12B03) and National Basic Research Program of China (973 Program, 2011CB201202) of Ministry of Science and Technology of China (MOST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, H., Jiang, W., Xue, Y. et al. Effect of water on carbonation of mineral aerosol surface models of kaolinite: a density functional theory study. Environ Earth Sci 73, 7053–7060 (2015). https://doi.org/10.1007/s12665-015-4404-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4404-9

Keywords

Navigation