Skip to main content

Advertisement

Log in

Monitoring landslides with geophysical and geodetic observations

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The objective of this study was to evaluate and predict land movement by integrating geodetic, geophysical and meteorological data in a landslide area. Specifically, electrical resistivity tomography surveying, Global Navigation Satellite System and terrestrial laser scanning techniques were integrated to monitor a landslide. The study area lies to the southeast of the town of Taşkent in southern Turkey, close to Balcılar in the Central Taurus mountain chain. Landslides result in considerable damage to structures, farmland and the environment in this area; therefore, it is important to characterise the size, extent and timing of past land movements in order to mitigate damage from future landslides. Analysis presented in this paper shows that the greatest land movements in the region occur in spring, when average motions can be up to 1.5 m per month. It is demonstrated that integrated techniques provide a better means for monitoring landslide processes and gathering data for predictions of future movements. Mapping landslide movements by integrating geophysical and geodetic observations can provide a meaningful evaluation of a landslide and its dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abdelmajid Y (2012) Investigation and comparison of 3D laser scanning software packages. Royal Institute of Technology (KTH), Stockholm

    Google Scholar 

  • Abellán A, Vilaplana JM, Martínez J (2006) Application of a long-range Terrestrial Laser Scanner to a detailed rockfall study at Vall de Núria (Eastern Pyrenees, Spain). Eng Geol 88(3–4):136–148. doi:10.1016/j.enggeo.2006.09.012

    Article  Google Scholar 

  • Akgun A, Kincal C, Pradhan B (2012) Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to Izmir city (west Turkey). Environ Monit Assess 184(9):5453–5470. doi:10.1007/s10661-011-2352-8

    Article  Google Scholar 

  • Akıncı H, Doğan S, Kılıçoğlu C, Keçeci SB (2010) Samsun İl Merkezinin Heyelan Duyarlılık Haritasının Üretilmesi. Electron J Map Technol 2(3):13–27 [In Turkish]

    Google Scholar 

  • Al-shalabi M, Billa L, Pradhan B, Mansor S, Al-Sharif AAA (2012) Modelling urban growth evolution and land-use changes using GIS based cellular automata and SLEUTH models: the case of Sana’a metropolitan city, Yemen. Environ Earth Sci 70(1):425–437. doi:10.1007/s12665-012-2137-6

    Article  Google Scholar 

  • Ayolabi EA, Folorunso AF, Odukoya AM, Adeniran AE (2013) Mapping saline water intrusion into the coastal aquifer with geophysical and geochemical techniques: the University of Lagos campus case (Nigeria). Springerplus 2:433. doi:10.1186/2193-1801-2-433

    Article  Google Scholar 

  • Bathrellos GD, Kalivas DP, Skilodimou HD (2009) GIS-based landslide susceptibility mapping models applied to natural and urban planning in Trikala, Central Greece. Estudios Geológicos 65(1):49–65. doi:10.3989/egeol.08642.036

    Article  Google Scholar 

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Papanastassiou D, Chousianitis KG (2011) Potential suitability for urban planning and industry development using natural hazard maps and geological–geomorphological parameters. Environ Earth Sci 66(2):537–548. doi:10.1007/s12665-011-1263-x

    Article  Google Scholar 

  • Bathrellos GD, Gaki-Papanastassiou K, Skilodimou HD, Skianis GA, Chousianitis KG (2012) Assessment of rural community and agricultural development using geomorphological–geological factors and GIS in the Trikala prefecture (Central Greece). Stoch Env Res Risk Assess 27(2):573–588. doi:10.1007/s00477-012-0602-0

    Article  Google Scholar 

  • Bayrak T (2007) Modelling the relationship between water level and vertical displacements on the Yamula Dam, Turkey. Nat Hazard Earth Sys 7(2):289–297. doi:10.5194/nhess-7-289-2007

    Article  Google Scholar 

  • Besl PJ, McKay ND (1992) A method for registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intell 14(2):239–256

    Article  Google Scholar 

  • Brideau M-A, Sturzenegger M, Stead D, Jaboyedoff M, Lawrence M, Roberts NJ, Ward BC, Millard TH, Clague JJ (2012) Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data. Landslides 9(1):75–91. doi:10.1007/s10346-011-0286-4

    Article  Google Scholar 

  • Brodu N, Lague D (2012) 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology. ISPRS J Photogramm 68:121–134. doi:10.1016/j.isprsjprs.2012.01.006

    Article  Google Scholar 

  • CloudCompare (2014) Telecom ParisTech (version 2.5.5.2) [GPL software]. EDF R&D

  • Drahor MG, Göktürkler G, Berge MA, Kurtulmuş TÖ (2006) Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey. Environ Geol 50(2):147–155. doi:10.1007/s00254-006-0194-4

    Article  Google Scholar 

  • Ekinci YL, Türkeş M, Demirci A, Erginal AE (2013) Shallow and deep-seated regolith slides on deforested slopes in Çanakkale, NW Turkey. Geomorphology 201:70–79. doi:10.1016/j.geomorph.2013.06.008

    Article  Google Scholar 

  • Gili JA, Corominas J, Rius J (2000) Using global positioning system techniques in landslide monitoring. Eng Geol 55(3):167–192. doi:10.1016/S0013-7952(99)00127-1

    Article  Google Scholar 

  • Glenn NF, Streutker DR, Chadwick DJ, Thackray GD, Dorsch SJ (2006) Analysis of LiDAR-derived topographic information for characterizing and differentiating landslide morphology and activity. Geomorphology 73(1–2):131–148. doi:10.1016/j.geomorph.2005.07.006

    Article  Google Scholar 

  • Gruen A, Akca D (2005) Least squares 3D surface and curve matching. ISPRS J Photogramm 59(3):151–174. doi:10.1016/j.isprsjprs.2005.02.006

    Article  Google Scholar 

  • Gumus K, Erkaya H (2011) Analyzing the geometric accuracy of simple shaped reference object models created by terrestrial laser scanners. Int J Phys Sci 6(28):6529–6536. doi:10.5897/IJPS11.344

    Google Scholar 

  • Hawamdeh A, Jaradat R, Alsaad Z (2014) Integrated application of geophysical methods for investigation of the Al-Berktain archaeological site in the city of Jerash. Environ Earth Sci, Jordan. doi:10.1007/s12665-014-3650-6

    Google Scholar 

  • James MR, Quinton JN (2014) Ultra-rapid topographic surveying for complex environments: the hand-held mobile laser scanner (HMLS). Earth Surf Proc Land 39(1):138–142

    Article  Google Scholar 

  • Karşıdağ G, Alkan RM (2012) Analysis of the accuracy of terrestrial laser scanning measurements. Electron J Map Technol 4(2):1–10 [In Turkish]

    Google Scholar 

  • Kasai M, Ikeda M, Asahina T, Fujisawa K (2009) LiDAR-derived DEM evaluation of deep-seated landslides in a steep and rocky region of Japan. Geomorphology 113(1–2):57–69. doi:10.1016/j.geomorph.2009.06.004

    Article  Google Scholar 

  • Kirschbaum DB, Adler R, Hong Y, Kumar S, Peters-Lidard C, Lerner-Lam A (2011) Advances in landslide nowcasting: evaluation of a global and regional modeling approach. Environ Earth Sci 66(6):1683–1696. doi:10.1007/s12665-011-0990-3

    Article  Google Scholar 

  • Lague D, Brodu N, Leroux J (2013) Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z). ISPRS J Photogramm 82:10–26. doi:10.1016/j.isprsjprs.2013.04.009

    Article  Google Scholar 

  • Lai JZC, Huang TJ, Liaw YC (2009) A fast k-means clustering algorithm using cluster center displacement. Pattern Recogn 42(11):2551–2556. doi:10.1016/j.patcog.2009.02.014

    Article  Google Scholar 

  • Lee C-C, Zeng L-S, Hsieh C-H, Yu C-Y, Hsieh S-H (2012) Determination of mechanisms and hydrogeological environments of Gangxianlane landslides using geoelectrical and geological data in central Taiwan. Environ Earth Sci 66(6):1641–1651. doi:10.1007/s12665-012-1522-5

    Article  Google Scholar 

  • Loke MH (2001) 2-D and 3-D Inversion and Modeling of Surface and Borehole Resistivity Data. In: United States Geological Survey, Connecticut, USA

  • Martines-López J, Rey J, Dueñas J, Hidalgo C, Benavente J (2013) Electrical tomography applied to the detection of subsurface cavities. J Cave Karst Stud. doi:10.4311/2011es0242

    Google Scholar 

  • Mastrocicco M, Vignoli G, Colombani N, Zeid NA (2009) Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy). Environ Earth Sci 61(2):311–322. doi:10.1007/s12665-009-0344-6

    Article  Google Scholar 

  • Optech C (2014) Web page of Optech ILRIS Terrestrial Laser Scanner. http://www.optech.com/index.php/product/optech-ilris/. Accessed 22 Nov 2014

  • Ozdemir A (2009) Landslide susceptibility mapping of vicinity of Yaka Landslide (Gelendost, Turkey) using conditional probability approach in GIS. Environ Geol 57(7):1675–1686. doi:10.1007/s00254-008-1449-z

    Article  Google Scholar 

  • Ozdemir A (2011) Landslide susceptibility mapping using Bayesian approach in the Sultan Mountains (Akşehir, Turkey). Nat Hazards 59(3):1573–1607. doi:10.1007/s11069-011-9853-1

    Article  Google Scholar 

  • Ozdemir A, Altural T (2013) A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: sultan Mountains, SW Turkey. J Asian Earth Sci 64:180–197. doi:10.1016/j.jseaes.2012.12.014

    Article  Google Scholar 

  • Ozdemir A, Delikanli M (2009) A geotechnical investigation of the retrogressive Yaka Landslide and the debris flow threatening the town of Yaka (Isparta, SW Turkey). Nat Hazards 49(1):113–136. doi:10.1007/s11069-008-9282-y

    Article  Google Scholar 

  • Özgül N (1997) Bozkır-Hadim-Taşkent (Orta Toroslar’ın Kuzey Kesimi) Dolayında Yer Alan Tektono-Stratigrafik Birliklerin Stratigrafisi. MTA Dergisi 119:113–174 [in Turkish]

    Google Scholar 

  • Papadopoulou-Vrynioti K, Bathrellos GD, Skilodimou HD, Kaviris G, Makropoulos K (2013) Karst collapse susceptibility mapping considering peak ground acceleration in a rapidly growing urban area. Eng Geol 158:77–88. doi:10.1016/j.enggeo.2013.02.009

    Article  Google Scholar 

  • Pirotti F, Guarnieri A, Vettore A (2013) Ground filtering and vegetation mapping using multi-return terrestrial laser scanning. ISPRS J Photogramm 76:56–63. doi:10.1016/j.isprsjprs.2012.08.003

    Article  Google Scholar 

  • Polyworks (2007) Beginner’s Guide InnovMetric Software Inc. QC, Canada

  • Rozos D, Bathrellos GD, Skillodimou HD (2011) Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County of Peloponnesus, Greece. Environ Earth Sci 63(1):49–63. doi:10.1007/s12665-010-0687-z

    Article  Google Scholar 

  • Rozos D, Skilodimou HD, Loupasakis C, Bathrellos GD (2013) Application of the revised universal soil loss equation model on landslide prevention. An example from N. Euboea (Evia) Island, Greece. Environ Earth Sci 70(7):3255–3266. doi:10.1007/s12665-013-2390-3

    Article  Google Scholar 

  • Sahin C, Alkis A, Ergun B, Kulur S, Batuk F, Kilic A (2012) Producing 3D city model with the combined photogrammetric and laser scanner data in the example of Taksim Cumhuriyet square. Opt Laser Eng 50(12):1844–1853. doi:10.1016/j.optlaseng.2012.05.019

    Article  Google Scholar 

  • Shrestha RL, Carter WE, Sartori M, Luzum BJ, Slatton KC (2005) Airborne laser swath mapping: quantifying changes in sandy beaches over time scales of weeks to years. ISPRS J Photogramm 59(4):222–232. doi:10.1016/j.isprsjprs.2005.02.009

    Article  Google Scholar 

  • Tarolli P (2013) Recognition of surface flow processes influenced by roads and trails in mountain areas using high-resolution topography. Eur J Remote Sens. doi:10.5721/EuJRS20134610

    Google Scholar 

  • Travelletti J, Malet JP, Samyn K, Grandjean G, Jaboyedoff M (2011) Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information. Landslides 10(1):37–54. doi:10.1007/s10346-011-0310-8

    Article  Google Scholar 

  • Turan A (2000) Korualan ve Bağbaşı (Hadim-Konya) Arasındaki Bölgenin Yapısal Özellikleri. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi 2(3):51–65 [in Turkish]

    Google Scholar 

  • Üstün A, Tuşat E, Yalvaç S, Özkan İ, Eren Y, Özdemir A, Bildirici İÖ, Üstüntaş T, Kırtıloğlu O, Mesutoğlu M, Doğanalp S, Canaslan F, Abbak RA, Avşar NB, Şimşek FF (2014) Land subsidence in Konya Closed Basin and its spatio-temporal detection by GPS and DInSAR. Environ Earth Sci. doi:10.1007/s12665-014-3890-5

    Google Scholar 

  • Wan S (2012) Entropy-based particle swarm optimization with clustering analysis on landslide susceptibility mapping. Environ Earth Sci 68(5):1349–1366. doi:10.1007/s12665-012-1832-7

    Article  Google Scholar 

  • Weiss NA (2012) Introductory statistics. Pearson Education, USA

    Google Scholar 

  • Yalçinkaya M, Bayrak T (2005) Comparison of static, kinematic and dynamic geodetic deformation models for Kutlugün Landslide in Northeastern Turkey. Nat Hazards 34(1):91–110. doi:10.1007/s11069-004-1967-2

    Article  Google Scholar 

  • Yeh H-F, Lin H-I, Wu C-S, Hsu K-C, Lee J-W, Lee C-H (2014) Electrical resistivity tomography applied to groundwater aquifer at downstream of Chih-Ben Creek basin. Environ Earth Sci, Taiwan. doi:10.1007/s12665-014-3752-1

    Google Scholar 

  • Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng Geol 79(3–4):251–266. doi:10.1016/j.enggeo.2005.02.002

    Article  Google Scholar 

  • Yilmaz I (2010) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61(4):821–836. doi:10.1007/s12665-009-0394-9

    Article  Google Scholar 

  • Yılmaz S, Narman C (2014) 2-D electrical resistivity imaging for investigating an active landslide along a ridgeway in Burdur region, southern Turkey. Arab J Geosci. doi:10.1007/s12517-014-1412-0

    Google Scholar 

  • Youssef AM, Maerz NH (2013) Overview of some geological hazards in the Saudi Arabia. Environ Earth Sci 70(7):3115–3130. doi:10.1007/s12665-013-2373-4

    Article  Google Scholar 

  • Zeybek M, Şanlıoğlu İ (2014) Accurate determination of the Taşkent (Konya, Turkey) landslide using a long-range terrestrial laser scanner. Bull Eng Geol Environ. doi:10.1007/s10064-014-0592-x

    Google Scholar 

  • Zhu W, Zhang Q, Ding XL, Zhao CY, Yang CS, Qu FF, Qu W (2014) Landslide monitoring by combining of CR-InSAR and GPS techniques. Adv Space Res 53(3):430–439

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Scientific and Technical Research Council of Turkey (TÜBİTAK-Project number 111Y307) and the Selcuk University Scientific Research Projects Coordinator (project number 11101028). We are also grateful to meteorological engineer Adnan Başaran and the General Directorate of State Hydraulic Works of Turkey (DSI) for providing meteorological data. Thanks are due to Prof. Dr. M. Kemal Gökay and Dr. Kemal Doğan from the Mining Engineering Department of Selcuk University for their comments concerning the geophysical aspects of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustafa Zeybek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeybek, M., Şanlıoğlu, İ. & Özdemir, A. Monitoring landslides with geophysical and geodetic observations. Environ Earth Sci 74, 6247–6263 (2015). https://doi.org/10.1007/s12665-015-4650-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-015-4650-x

Keywords

Navigation