Skip to main content

Advertisement

Log in

GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The main purpose of this study was to map landslide susceptibility through the AHP and CF models, using a geographic information system (GIS), for the Baozhong region of Baoji City, China. At first, a landslide inventory map was prepared using technical reports, aerial photographs, and coupling with field surveys. A total of 79 landslides were mapped, out of which 55 (70 %) were randomly selected for building landslide susceptibility models, while the rest 24 landslides (30 %) were applied for validating the models. In this case study, the following landslide conditioning factors were evaluated: slope degree, slope aspect, plan curvature, altitude, geomorphology, lithology, distance from faults, distance from rivers, and precipitation. Subsequently, landslide susceptibility maps were produced using the AHP and CF models. Finally, the validation of landslide susceptibility map was accomplished with areas under the curve (AUC) and the Seed Cell Area Index (SCAI). The AUC plot estimation results indicated that the susceptibility map applying CF model has a higher prediction accuracy of 81.43 % than the accuracy of 75.97 % applying AHP model. Similarly, the validation results also showed that the success rate of the CF model was 85.93 %, while the success rate was 77.80 % for the AHP model. According to the validation results of the AUC evaluation, the map produced by CF model behaves better performance. Furthermore, the validation results using the SCAI also indicated that the CF model has a higher predication accuracy than the AHP model. These landslide susceptibility maps can be used for preliminary land use planning and hazard mitigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akgun A (2012) A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides 9:93–106

    Article  Google Scholar 

  • Akgun A, Turk N (2010) Landslide susceptibility mapping for Ayvalik (Western Turkey) 379 and its vicinity by multicriteria decision analysis. Environ Earth Sci 61(3):595–611

    Article  Google Scholar 

  • Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Proc Landf 26:1251–1263

    Article  Google Scholar 

  • Bai S, Lu G, Wang J, Zhou P, Ding L (2010) GIS-based rare events logistic regression for landslide-susceptibility mapping of Lianyungang, China. Environ Earth Sci 62(1):139–149

    Article  Google Scholar 

  • Binaghi E, Luzi L, Madella P, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster-Shafer approaches. Nat Hazards 17:77–97

    Article  Google Scholar 

  • Chauhan S, Sharma M, Arora M, Gupta N (2010) Landslide susceptibility zonation through ratings derived from artificial neural network. Intl J Appl Earth Observ Geoinf 12:340–350

    Article  Google Scholar 

  • Choi J, Oh HJ, Lee HJ, Lee C, Lee S (2012) Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng Geol 124:12–23

    Article  Google Scholar 

  • Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrera A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 107–133

    Chapter  Google Scholar 

  • Devkota KC, Regmi AD, Pourghasemi HR, Yoshida K, Pradhan B, Ryu IC, Dhital MR, Omar F, Althuwaynee (2013) Landslide susceptibility mapping using certainty factor, index of entropy and logistic regression models in GIS and their comparison at Mugling-Narayanghat road section in Nepal Himalaya. Nat Hazards 65:135–165

    Article  Google Scholar 

  • Einstein HH (1988) Special lecture: landslides risk assessment procedure. In: Proceedings of 5th symposium on landslides, Lausanne, vol 2, pp 1075–1090

  • Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relation to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250

    Article  Google Scholar 

  • Ercanoglu M, Gokceoglu C, van Asch TWJ (2004) Landslide susceptibility zoning north of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23

    Article  Google Scholar 

  • Felicisimo A, Cuartero A, Remondo J, Quiros E (2013) Mapping landslide susceptibility with logistic regression, multiple adaptive regression splines, classification and regression trees, and maximum entropy methods: a comparative study. Landslides 10:175–189

    Article  Google Scholar 

  • Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98

    Article  Google Scholar 

  • Foumelis M, Lekkas E, Parcharidis I (2004) Landslide susceptibility mapping by GIS-based qualitative weighting procedure in Corinth area. Bull Geol Soc Greece XXXVI:904–912

    Google Scholar 

  • Hasekiogullar GD, Ercanoglu M (2012) A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Nat Hazards 63:1157–1179

    Article  Google Scholar 

  • Helmi ZMS, Izni MZ, Zahidi Shamsul AB (2010) Development of landslide susceptibility map utilizing remote sensing and geographic information systems (GIS). Int J Disaster Prev Manag 1:59–69

    Google Scholar 

  • Kincal C, Akgun A, Koca MY (2009) Landslide susceptibility assessment in the Izmir (WestAnatolia, Turkey) city center and its near vicinity by the logistic regression method. Environ Earth Sci 59:745–756

    Article  Google Scholar 

  • Kundu S, Saha AK, Sharma DC, Pant CC (2013) Remote sensing and GIS based landslide susceptibility assessment using binary logistic regression model: a case study in the Ganeshganga Watershed, Himalayas. J Indian Soc Remote Sens 41(3):697–709

    Article  Google Scholar 

  • Lan HX, Zhou CH, Wang LJ, Zhang HY, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol 76:109–128

    Article  Google Scholar 

  • Lee S (2005) Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int J Remote Sens 26:1477–1491

    Article  Google Scholar 

  • Lee S, Min K (2001) Statistical analyses of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113

    Article  Google Scholar 

  • Lee S, Ryu JH, Won JS, Park HJ (2004) Determination and application of the weights for landslide susceptibility mapping: using an artificial neural network. Eng Geol 71:289–302

    Article  Google Scholar 

  • Marjanović M, Kovačević M, Bajat B, Voženílek V (2011) Landslide susceptibility assessment using SVM machine learning algorithm. Eng Geol 123:225–234

    Article  Google Scholar 

  • Nefeslioglu HA, Duman TY, Durmaz S (2008) Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of turkey). Geomorphology 94(3–4):401–418

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2012a) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab J Geosci 6:2351–2365

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C (2012b) Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Nat Hazards 63(2):965–996

    Article  Google Scholar 

  • Pourghasemi HR, Moradi HR, Fatemi Aghda SM (2013a) Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Nat Hazards 69:749–779

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Deylami MK (2013b) A comparative assessment of prediction capabilities of Dempster-Shafer and weights-of-evidence models in landslide susceptibility mapping using GIS. Geomat Nat Hazards Risk 4(2):93–118

    Article  Google Scholar 

  • Pourghasemi HR, Pradhan B, Gokceoglu C, Mohammadi M, Moradi HR (2013c) Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed. Iran Arab J Geosci 6:2351–2365

    Article  Google Scholar 

  • Pouydal CP, Chang C, Oh HJ, Lee S (2010) Landslide susceptibility maps comparing frequency ratio and artificial neural networks: a case study from the Nepal Himalaya. Environ Earth Sci 61:1049–1064

    Article  Google Scholar 

  • Pradhan B (2010a) Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia. Adv Space Res 45:1244–1256

    Article  Google Scholar 

  • Pradhan B (2010b) Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. J Indian Soc Remote Sens 38(2):301–320

    Article  Google Scholar 

  • Pradhan B (2013) A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput Geosci 51:350–365

    Article  Google Scholar 

  • Pradhan B, Buchroithner MF (2010) Comparison and validation of landslide susceptibility maps using an artificial neural network model for three test areas in Malaysia. Environ Eng Geosci 16(2):107–126

    Article  Google Scholar 

  • Pradhan B, Lee S (2009) Landslide risk analysis using artificial neural network model focusing on different training sites. Int J Phys Sci 3(11):1–15

    Google Scholar 

  • Pradhan B, Lee S (2010a) Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models. Environ Earth Sci 60(5):1037–1054

    Article  Google Scholar 

  • Pradhan B, Lee S (2010b) Landslide susceptibility assessment and factor effect analysis: back-propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environ Modell Softw 25(6):747–759

    Article  Google Scholar 

  • Pradhan B, Pirasteh S (2010) Comparison between prediction capabilities of neural network and fuzzy logic techniques for landslide susceptibility mapping. Disaster Adv 3(2):26–34

    Google Scholar 

  • Pradhan B, Oh HJ, Buchroithner M (2010) Weights-of-evidence model applied to landslide susceptibility mapping in a tropical hilly area. Geomatics Nat Hazards Risk 1(3):199–223

    Article  Google Scholar 

  • Regmi NR, Giardino JR, Vitek JD (2010) Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA. Geomorphology 115:172–187

    Article  Google Scholar 

  • Saaty TL (1980) The analytic hierarchy process. McGraw-Hill Book Co, New York

    Google Scholar 

  • Saaty TL (2000) The fundamentals of decision making and priority theory with the analytic hierarchy process, vol VI, 2nd edn. RWS Publications, Pitsburg

    Google Scholar 

  • Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation with a case study in the Himalayas. Landslides 2:61–69

    Article  Google Scholar 

  • Soeters R, van Westen CJ (1996) Slope stability recognition analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation, transportation research board special report 247. National Academy Press, Washington, pp 129–177

    Google Scholar 

  • Solaimani K, Seyedeh ZM, Ataollah K (2013) Landslide susceptibility mapping based on frequency ratio and logistic regression models. Arab J Geosci 6:2557–2569

    Article  Google Scholar 

  • Soyoung P, Chuluong C, Byungwoo K, Jinsoo K (2013) Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environ Earth Sci 68:1443–1464

    Article  Google Scholar 

  • Suzen ML, Doyuran V (2004) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Thanh LN, De Smedt F (2012) Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environ Earth Sci 66:1739–1752

    Article  Google Scholar 

  • Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. As Eng Geol Bull 21(3):337–342

    Google Scholar 

  • Xu C, Dai FC, Xu X, Lee YH (2012a) GIS-based support vector machine modeling of earthquake-triggered landslide susceptibility in the Jianjiang River watershed, China. Geomorphology 145–146:70–80

    Article  Google Scholar 

  • Xu C, Xu XW, Dai FC, Saraf Arun K (2012b) Comparison of different models for susceptibility mapping of earthquake triggered landslides related with the 2008 Wenchuan earthquake in China. Comput Geosci 46:317–329

    Article  Google Scholar 

  • Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Anderson (Turkey): comparision of results and confirmations. Catena 1:1–12

    Article  Google Scholar 

  • Yalcin A, Bulut F (2007) Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NE-Turkey). Nat Hazards 41:201–226

    Article  Google Scholar 

  • Yalcin A, Reis S, Cagdasoglu A, Yomralioglu T (2011) A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE Turkey. Catena 85:274–287

    Article  Google Scholar 

  • Yilmaz I (2009a) A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks. Bull Eng Geol Environ 68(3):297–306

    Article  Google Scholar 

  • Yilmaz I (2009b) Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: a case study from Kat landslides (Tokat-Turkey). Comput Geosci 35(6):1125–1138

    Article  Google Scholar 

  • Yilmaz I (2010a) The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability (CP) and artificial neural network (ANN). Environ Earth Sci 60:505–519

    Article  Google Scholar 

  • Yilmaz I (2010b) Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: conditional probability, logistic regression, artificial neural networks, and support vector machine. Environ Earth Sci 61:821–836

    Article  Google Scholar 

  • Zarea M, Pourghasemi HR, Vafakhah M, Pradhan B (2013) Landslide susceptibility mapping at Vaz watershed (Iran) using an artificial neural network model: a comparison between multi-layer perceptron (MLP) and radial basic function (RBF) algorithms. Arab J Geosci 6:2873–2888

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank three anonymous reviewers for their helpful comments on the previous versions of the manuscript. The authors also want to express their gratitude to everyone who provided assistance for the present study. The study is jointly supported by the Key Project of Natural Science Foundation of China (Grant No. 41430643), Fundamental Research Funds for the Central Universities (Grant No. 2012QNA63), and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenping Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Li, W., Chai, H. et al. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environ Earth Sci 75, 63 (2016). https://doi.org/10.1007/s12665-015-4795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-4795-7

Keywords

Navigation