Skip to main content
Log in

Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This study aims to investigate the physical and chemical effects of interactions between groundwater and surface water (GW–SW)—particularly in streams—on nitrate contamination. The effects of GW–SW interactions are briefly reviewed, with a particular emphasis on processes and environments that influence increases or decreases in nitrate concentration. Then, this paper analyses nitrate concentrations in groundwater and surface water in the western Po plain (Northwestern Italy); this analysis includes the nitrate concentration profiles across the shallow aquifer and intersecting the main streams on the plain. The investigation highlights how the concentration trends are similar, even when nitrate levels in rivers and groundwater are not comparable. The maximum nitrate concentrations in the surface water were generally measured in areas with high-nitrate levels in groundwater. An analysis of the nitrate concentration profiles highlighted the mutual influences of GW–SW. The most important streams on the plain (the Po River and Stura di Demonte River), both of them gaining streams, seem to reduce the nitrate concentrations of groundwater at a study scale. The proposed conceptual model indicates how the near-stream environment (the riparian zone, wetlands, hyporheic zone and shallow organic-rich soils in the near-stream environment) and the groundwater flow systems in shallow and deep aquifers, from the recharge zone to the streams, could dramatically affect the nitrate concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal GD, Lunkad SK, Malkhed T (1999) Diffuse agricultural nitrate pollution of groundwaters in India. Wat Sci Tech 39(3):67–75

    Article  Google Scholar 

  • Al-Agha MR (1999) Impact of waste water management on groundwater quality in the Gaza Strip, Palestine. In: Chilton (ed) Groundwater in the urban environment: selected city profiles. Balkema, Rotterdam, pp 77–84

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. U.S. Geological Survey Circular 1186, 79 pp

  • Almasri MN (2007) Nitrate contamination of groundwater: a conceptual management framework. Environ Impact Asses 27(3):220–242

    Article  Google Scholar 

  • APAT-IRSA (2003) Analytical methods for waters (in Italian). Serie APAT Manuali e Linee Guida 29/2003. APAT, Rome

  • Baker L (1992) Introduction to nonpoint source pollution in the United States and prospects for wetland use. Ecol Eng 1:1–26

    Article  Google Scholar 

  • Baker MA, Vervier P (2004) Hydrological variability, organic matter supply and denitrification in the Garonne River ecosystem. Freshw Biol 49:181–190

    Article  Google Scholar 

  • Balestrini R, Arese C, Delconte C (2006) Nitrogen removal in a freshwater riparian wetland: an example from italian lowland spring. Verh Int Ver Limnol 29(5):2217–2220

    Google Scholar 

  • Balestrini R, Arese C, Delconte CA, Lotti A, Salerno F (2011) Nitrogen removal in subsurface water by narrow buffer strips in the intensive farming landscape of the Po River watershed, Italy. Ecol Eng 37:148–157

    Article  Google Scholar 

  • Bassanino M, Sacco D, Zavattaro L, Grignani C (2011) Nutrient balance as a sustainability indicator of different agro-environments in Italy. Ecol Indic 11:715–723

    Article  Google Scholar 

  • Bayani Cardenas M (2009) Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour Res 45:W06429. doi:10.1029/2008WR007651

    Google Scholar 

  • Bertrand G, Siergieiev D, Ala-Aho P, Rossi PM (2014) Environmental tracers and indicators bringing together groundwater, surface water and groundwater-dependent ecosystems: importance of scale in choosing relevant tools. Environ Earth Sci 72:813–827. doi:10.1007/s12665-013-3005-8

    Article  Google Scholar 

  • Böhlke JK, Denver JM (1995) Combined use of ground-water dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, atlantic coastal plain, Maryland. Water Resour Res 31:2319–2339

    Article  Google Scholar 

  • Borin M, Bigon E (2002) Abatement of NO3-N concentration in agricultural waters by narrow buffer strips. Environ Pollut 117(1):165–168

    Article  Google Scholar 

  • Bortolami GC, Maffeo B, Maradei V, Ricci B, Sorzana F (1976) Lineamenti di litologia e geoidrologia del settore piemontese della Pianura Padana. Quaderni dell’Istituto di Ricerca sulle Acque 28(1):3–37, Roma

  • Botta F, De Luca DA, Lasagna M (2005) Study of the interactions between surface water and groundwater with in situ tests. In: Proceedings of the 6th international conference “Sharing a common vision of our water resources”, Menton, France, 7–10 September 2005, Paper EWRA129, 17 pp

  • Bourg ACM, Bertin C (1993) Biogeochemical processes during the infiltration of river water into an alluvial aquifer. Environ Sci Technol 27:661–666

    Article  Google Scholar 

  • Bove A, Casaccio D, Destefanis E, De Luca DA, Lasagna M, Masciocco L, Ossella L, Tonussi M (2005) Idrogeologia della pianura piemontese, Regione Piemonte. Mariogros Industrie Grafiche S.p.A, Torino (CD-Rom)

    Google Scholar 

  • Brodie R, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An overview of tools for assessing groundwater-surface water connectivity. Australia, Bureau of Rural Sciences, Canberra, p 131

    Google Scholar 

  • Bukowski J, Somers G, Bryanton J (2001) Agricultural contamination of groundwater as a possible risk factor for growth restriction or prematurity. J Occup Environ Med 43:377–383

    Article  Google Scholar 

  • Burow KR, Nolan BT, Rupert MG, Dubrovsky NM (2010) Nitrate in groundwater of the United States, 1991–2003. Environ Sci Technol 44(13):4988–4997

    Article  Google Scholar 

  • Canavese PA, De Luca DA, Masciocco L (2004) La rete di monitoraggio delle acque sotterranee delle aree di pianura della Regione Piemonte: quadro idrogeologico. Prismas: il monitoraggio delle acque sotterranee nella Regione Piemonte. Mariogros Industrie Grafiche S.p.A., Torino, 180 pp

  • Chowdary VM, Rao NH, Sarma PBS (2005) Decision support framework for assessment of non-point-source pollution of groundwater in large irrigation projects. Agric Water Manag 75:194–225

    Article  Google Scholar 

  • Clement JC, Holmes RM, Peterson BJ, Pinay G (2003) Isotopic investigation of denitrification in a riparian ecosystem in western France. J Appl Ecol 40:1035–1048

    Article  Google Scholar 

  • Comazzi M, De Luca DA, Masciocco L, Zuppi GM (1988) Lineamenti idrogeologici del Piemonte. In: “Studi Idrogeologici sulla Pianura Padana”, 4, CLUP, Milano

  • Dahm CN, Grimm NB, Marmonier P, Valett HM, Vervier P (1998) Nutrient dynamics at the interface between surface waters and groundwaters. Freshw Biol 40:427–451

    Article  Google Scholar 

  • De Luca DA, Lasagna M (2005) Aquifer role in reducing nitrate contamination by means of the dilution process. In: Proceedings of the 6th international conference “Sharing a common vision of our water resources”, Menton, France, 7–10 September 2005, Paper EWRA066c, 17 pp

  • De Luca DA, Ossella L (2014) Assetto idrogeologico della Città di Torino e del suo hinterland. Geologia dell’Ambiente 1:10–15

    Google Scholar 

  • De Luca DA, Lasagna M, di Morelli di Popolo e Ticineto A (2007) Installation of a vertical slurry wall around an Italian quarry lake: complications arising and simulation of the effects on groundwater flow. Env Geol 53:177–189. doi:10.1007/s00254-006-0632-3

    Article  Google Scholar 

  • De Luca DA, Destefanis E, Forno MG, Lasagna M, Masciocco L (2014) The genesis and the hydrogeological features of the Turin Po Plain fontanili, typical lowland springs in Northern Italy. Bull Eng Geol Environ 73:409–427. doi:10.1007/s10064-013-0527-y

    Google Scholar 

  • Debernardi L, De Luca DA, Lasagna M (2005) Il processo di denitrificazione naturale nelle acque sotterranee in Piemonte. In: Proceedings of AVR05 and 4th national congress on the protection and management of groundwater—Reggia di Colorno (PR), Italy, 21–23 September 2005, Paper ID 176, 27 pp

  • Debernardi L, De Luca DA, Lasagna M (2008) Correlation between nitrate concentration in groundwater and parameter affecting aquifer intrinsic vulnerability. Env Geol 55:539–558. doi:10.1007/s00254-007-1006-1

    Article  Google Scholar 

  • Decreto Legislativo 2 febbraio 2001, n. 31. Attuazione della direttiva 98/83/CE relativa alla qualità delle acque destinate al consumo umano. Gazz. Uff. 3 marzo 2001, n. 52—Supplemento Ordinario n. 41

  • Decreto Legislativo 16 marzo 2009, n. 30. Attuazione della direttiva 2006/118/CE, relativa alla protezione delle acque sotterranee dall’inquinamento e dal deterioramento. Gazz. Uff. 4 aprile 2009, n. 79

  • Deliberazione della Giunta Regionale 3 giugno 2009, n. 34-11524. Criteri tecnici per l’identificazione della base dell’acquifero superficiale e aggiornamento della cartografia contenuta nelle “Monografie delle macroaree idrogeologiche di riferimento dell’acquifero superficiale” del Piano di Tutela delle Acque, approvato con D.C.R. 117-10731 del 13/03/2007. B.U. 25 del 25 giugno 2009

  • Dent CL, Grimm NB, Martı E, Edmonds JW, Henry JC, Welter JR (2007) Variability in surface-subsurface hydrologic interactions and implications for nutrient retention in an arid-land stream. J Geophys Res 112:G04004. doi:10.1029/2007JG000467

    Google Scholar 

  • Duff JH, Triska FJ (1990) Denitrification in sediments from the hyporheic zone adjacent to a small forested stream. Can J Fish Aquat Sci 47:1140–1147

    Article  Google Scholar 

  • Duff JH, Triska FJ (2000) Nitrogen biogeochemistry and surface-subsurface exchange in streams. In: Jones JB, Muholland PJ (eds) Streams and ground waters. Academic Press, Boston, pp 197–220

    Chapter  Google Scholar 

  • Duff JH, Murphy F, Fuller CC, Triska FJ, Harvey JW, Jackman AP (1998) A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams. Limnol Oceanogr 43(6):1378–1383

    Article  Google Scholar 

  • EC (1998) Council directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Off J Eur Commun L 330(1998):32

    Google Scholar 

  • Edwardson KJ, Bowden WB, Dahm C, Morrice J (2003) The hydraulic characteristics and geochemistry of hyporheic and parafluvial zones in Arctic tundra streams, north slope, Alaska. Adv Water Resour 26(9):907–923

    Article  Google Scholar 

  • EEC (1991) Council directive 91/676/EEC of 12 December 1991 concerning the protection of waters against pollution caused by nitrates from agricultural sources. OJ L 375, 31.12.1991

  • Franchino E, Lasagna M, Bucci A, De Luca DA (2014) Statistical analysis of groundwater nitrate concentrations in piedmont plain aquifers (north-western Italy). In: Prooceding of flowpath 2014—national meeting on hydrogeology, Viterbo (Italy), June 18–20, 2014, pp 62–63

  • Gillham RW, Cherry JA (1978) Field evidence of denitrification in shallow groundwater flow systems. Water Pollut Res Can 13(1):53–71

    Google Scholar 

  • Gilliam JW (1994) Riparian wetlands and water quality. J Environ Qual 23:896–900

    Article  Google Scholar 

  • Goss MJ, Barry DAJ, Rudolph DL (1998) Contamination in Ontario farmstead domestic wells and its association with agriculture: 1. Results from drinking water wells. J Contam Hydrol 32(3–4):267–293

    Article  Google Scholar 

  • Green CT, Fisher LH, Bekins BA (2008) Nitrogen fluxes through unsaturated zones in five agricultural settings across the United States. J Environ Qual 37(3):1073–1085

    Article  Google Scholar 

  • Harter T, Davis H, Mathews M, Meyer R (2002) Shallow groundwater quality on dairy farms with irrigated forage crops. J Contam Hydrol 55:287–315

    Article  Google Scholar 

  • Harvey JW, Bencala KE (1993) The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resour Res 29(1):89–98. doi:10.1029/92WR01960

    Article  Google Scholar 

  • Harvey JW et al (2003) Predicting changes in hydrologic retention in an evolving semi-arid alluvial stream. Adv Water Resour 26(9):939–950. doi:10.1016/S0309-1708(03)00085-X

    Article  Google Scholar 

  • Haycock NE, Pinay G, Walker C (1993) Nitrogen retention in river corridors: european perspectives. Ambio 22:340–346

    Google Scholar 

  • Hedin LO, Von Fisher JC, Ostrom NE, Kennedy BP, Brown MG, Robertson GP (1998) Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology 79:684–703

    Google Scholar 

  • Hegesh E, Shiloah J (1982) Blood nitrates and infantile methemoglobinemia. Clin Chim Acta 125:107–115

    Article  Google Scholar 

  • Hill AR (1996) Nitrate removal in stream riparian zones. J Environ Qual 22:743–755

    Article  Google Scholar 

  • Hill AR (2000) Stream chemistry and riparian zones. In: Jones JB Jr, Mulholland PJ (eds) Streams and ground waters. Academic Press, San Diego

    Google Scholar 

  • Hill AR, Labadia CF, Sanmugadas K (1998) Hyporheic zone hydrology and nitrogen dynamics in relation to the streambed topography of a N-rich stream. Biogeochemistry 42:285–310. doi:10.1023/A:1005932528748

    Article  Google Scholar 

  • Hinkle SR, Duff JH, Triska FJ, Laenen A, Gates EB, Bencala KE, Wentz DA, Silva SR (2001) Linking hyporheic flow and nitrogen cycling near the Willametter River—a large river in Oregon, USA. J Hydrol 244:157–180

    Article  Google Scholar 

  • Holmes RM, Jones JB, Fisher SG, Grimm NB (1996) Denitrification in a nitrogen-limited stream ecosystem. Biogeochemistry 33:125–146

    Article  Google Scholar 

  • Jones JB Jr, Holmes RM (1996) Surface-subsurface interactions in stream ecosystems. Trends Ecol Evol 11:239–242

    Article  Google Scholar 

  • Jones JB Jr, Fisher SG, Grimm NB (1995) Nitrification in the hyporheic zone of a desert stream ecosystem. J North Am Benthol Soc 14:249–258

    Article  Google Scholar 

  • Jonsson K (2003) Effect of hyporheic exchange on conservative and reactive solute transport in streams. Model assessments based on tracers tests. Acta Universitatis Upsaliensis. Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology 866. 57 pp. Uppssala

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater—surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887

    Article  Google Scholar 

  • Kayabalı K, Çelik M, Karatosun H, Arıgün Z, Koçbay A (1999) The influence of a heavily polluted urban river on the adjacent aquifer systems. Environ Geol 38:233–243

    Article  Google Scholar 

  • Kazezyılmaz-Alhan CM, Medina MA (2006) Stream solute transport incorporating hyporheic zone processes. J Hydrol 329(1–2):26–38

    Article  Google Scholar 

  • Kölle W, Strebel O, Böttcher J (1990) Reduced sulphur compounds in sandy aquifers and their interactions with groundwater. Groundwater monitoring and management. In: Proceedings of the Dresden symposium, March 1987. IAHS Publ. no. 173, 1990

  • Korom SF (1992) Natural denitrification in the saturated zone: a review. Water Resour Res 28:1657–1668

    Article  Google Scholar 

  • Lasagna M (2006) I nitrati nelle acque sotterranee della pianura piemontese: distribuzione, origine, attenuazione e condizionamenti idrogeologici “Nitrate in Piemonte plain groundwater: distribution, origin, attenuation and hydrogeological conditioning. PhD Thesis, University of Torino, Italy, 350 pp

  • Lasagna M, De Luca DA (2008) Contaminazione da nitrati nelle acque sotterranee della pianura torinese-cuneese: quadro generale e ruolo dei corsi d’acqua. Giornale di Geologia Applicata 8:75–87

    Google Scholar 

  • Lasagna M, De Luca DA, Sacchi E, Bonetto S (2006) Studio dell’origine dei nitrati nelle acque sotterranee piemontesi mediante gli isotopi dell’azoto. Giornale di geologia applicata 2:137–143

    Google Scholar 

  • Lasagna M, De Luca DA, Debernardi L, Clemente P (2009) La portata unitaria nella valutazione della capacità di attenuazione per diluizione di un acquifero (volumetric flow rate per unit perpendicular to the flow direction for the evaluation of aquifer attenuation capacity by means of the dilution process). Rendiconti Online Società Geologica Italiana 6:300–301

    Google Scholar 

  • Lasagna M, De Luca DA, Debernardi L, Clemente P (2013) Effect of the dilution process on the attenuation of contaminants in aquifers. Environ Earth Sci 70:2767–2784. doi:10.1007/s12665-013-2336-9

    Article  Google Scholar 

  • Lasagna M, Caviglia C, De Luca DA (2014) Simulation modeling for groundwater safety in an overexploitation situation: the Maggiore Valley context (Piedmont, Italy). Bull Eng Geol Environ 73:341–355. doi:10.1007/s10064-013-0500-9

  • Lasagna M, Franchino E, De Luca DA (2015) Areal and vertical distribution of nitrate concentration in Piedmont plain aquifers (North-western Italy). Lollino et al G (eds) Engineering geology for society and territory—volume 3, river basins, reservoir sedimentation and water resources. Springer International Publishing Switzerland 2015, pp 389–392. doi:10.1007/978-3-319-09054-2_81

  • Li J, Lu W, Zeng X, Yuan J, Yu F (2010) Analysis of spatial–temporal distributions of nitrate-N concentration in Shitoukoumen catchment in northeast China. Environ Monit Assess 169:335–345

    Article  Google Scholar 

  • Liao L, Green CT, Bekins BA, Böhlke JK (2012) Factors controlling nitrate fluxes in groundwater in agricultural areas. Water Resour Res 48, W00L09. doi:10.1029/2011WR011008

  • Lowrance R, Todd R, Fail J, Hendrickson OJ, Leonard R, Asmussen L (1984) Riparian forests as nutrient filters in agricultural watersheds. Bioscience 34:374–377

    Article  Google Scholar 

  • Luca De et al (2004) PRISMAS: Il monitoraggio delle Acque Sotterranee nella Regione Piemonte. Regione Piemonte, Direzione Pianificazione Risorse Idriche. Mariogros Industrie Grafiche S.p.A, Torino

    Google Scholar 

  • MacQuarrie KTB, Sudicky EA, Robertson WD (2011) Numerical simulation of a fine-grained denitrification layer for removing septic system nitrate from shallow groundwater. J Contam Hydrol 52:29–55

    Article  Google Scholar 

  • Malard F, Uehlinger U, Zah R, Tockner K (2006) Flood-pulse and riverscape dynamics in a braided glacial river. Ecology 87:704–716

    Article  Google Scholar 

  • Manassaram DM, Backer LC, Messing R, Fleming LE, Luke B, Monteilh CP (2010) Nitrates in drinking water and methemoglobin levels in pregnancy: a longitudinal study. Environ Health 9:60. doi:10.1186/1476-069X-9-60

    Article  Google Scholar 

  • McMahon PB, Böhlke JK (1996) Denitrification and mixing in a stream aquifer system: effects on nitrate loading to surface water. J Hydrol 186:105–128

    Article  Google Scholar 

  • Nolan B, Stoner J (2000) Nutrients in groundwaters of the conterminous United States, 1992–1995. (2000). USGS staff—published research. Paper 59. http://digitalcommons.unl.edu/usgsstaffpub/59

  • Pinay G, Haycock NE, Ruffinoni C, Holmes RM (1994) The role of denitrification in nitrogen retention in river corridors. In: Mitsch WJ (ed) Global wetlands: old world and new. Elsevier, Amsterdam, pp 107–116

    Google Scholar 

  • Postma D, Boesen C, Kristiansen H, Larsen F (1991) Nitrate reduction in an unconfined aquifer: water chemistry, reduction processes, and geochemical modeling. Water Resour Res 27:2027–2045

    Article  Google Scholar 

  • Pratt PF, Lund LJ, Rible JM (1978) An approach to measuring leaching of nitrate from freely drained irrigated field. In: Nitrogen environmental, vol 1. Academic Press, London

  • Pretty JL, Hildrew AG, Trimmer M (2006) Nutrient dynamics in relation to surface–subsurface hydrological exchange in a groundwater fed chalk stream. J Hydrol 330(1–2):84–100

  • Puckett LJ (2004) Hydrogeologic controls on the transport and fate of nitrate in ground water beneath riparian buffer zones: results from thirteen studies across the United States. Water Sci Technol 49(3):47–53

    Google Scholar 

  • Puckett LJ, Hughes WB (2005) Transport and fate of nitrate and pesticides: hydrogeology and riparian zone processes. J Environ Qual 34:2278–2292

    Article  Google Scholar 

  • Puckett LJ, Cowdery TK, McMahon PB, Tornes LH, Stoner JD (2002) Using chemical, hydrologic, and age dating analysis to delineate redox processes and fl ow paths in the riparian zone of a glacial outwash aquifer stream system. Water Resour Res. doi:10.1029/2001WR000396

    Google Scholar 

  • Puckett LJ, Zamora C, Essaid H, Wilson JT, Johnson HM, Brayton MJ, Vogel JR (2008) Transport and fate of nitrate at the ground-water/surface-water interface. J Environ Qual 37:1034–1050

    Article  Google Scholar 

  • Regione Piemonte (2008) Carta dell’uso del suolo 1:500000. Available at: http://www.regione.piemonte.it/territorio/dwd/pianifica/tavoloInterregionale/usoSuolo.pdf. Accessed 29 July 2015

  • Rosenberry DO, LaBaugh JW (2008) Field techniques for estimating water fluxes between surface water and ground water: U.S. Geological Survey Techniques and Methods 4–D2, 128 pp

  • Ruehl CR, Fisher AT, Los Huertos M, Wanke SD, Wheat CG, Kendall C, Hatch CE, Shennan C (2007) Nitrate dynamics within the Pajaro River, a nutrient-rich, losing stream. J N Am Benthol Soc 26:191–206

    Article  Google Scholar 

  • Sabater S, Butturini A, Clement J, Burt T, Dowrick D, Hefting M, Maıˆtre V, Pinay G, Postolache G, Rzepecki M, Sabater F (2003) Nitrogen removal by riparian buffers along a European climatic gradient: patterns and factors of variation. Ecosystems 6:20–30

    Article  Google Scholar 

  • Schade JD, Marti E, Welter JR, Fisher SG, Grimm NB (2002) Sources of nitrogen to the riparian zone of a desert stream: implications for riparian vegetation and nitrogen retention. Ecosystems 5:68–79

    Article  Google Scholar 

  • Seitzinger S, Harrison JA, Jk Bohlke, Bouwman AF, Lowrance R, Peterson B, Tobias C, Van Drecht G (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090

    Article  Google Scholar 

  • Starr RC, Gillham RW (1993) Denitrification and organic carbon availability in two aquifers. Ground Water 31(6):934–947

    Article  Google Scholar 

  • Strebel O, Duynisveld WHM, Bottcher J (1989) Nitrate pollution of groundwater in western Europe. Agric Ecosyst Environ 26:189–214

    Article  Google Scholar 

  • Thorburn PJ, Biggs JS, Weier KL, Keating BA (2003) Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agric Ecosyst Environ 94:49–58

    Article  Google Scholar 

  • Toda H, Mochizuki Y, Kawanishi T, Kawashima H (2002) Denitrification in shallow groundwater in a coastal agricultural area in Japan. Nutr Cyc Agroecosys 63:167–173

    Article  Google Scholar 

  • Triska FJ, Duff JH, Avanzino RJ (2011) Influence of exchange flow between the channel and hyporheic zone on nitrate production in a small mountain stream. Can J Fish Aquat Sci 47(11):2099–2111

    Article  Google Scholar 

  • US EPA (2000) Drinking water standards and health advisories. U.S. Environmental Protection Agency, Office of Water. EPA-822-B-00-001

  • Vidon P, Hill AR (2004) Denitrification and patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry 71:259–283

    Article  Google Scholar 

  • Winter TC (1999) Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol J 7:28–45

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water—a single resource. U.S. Geological Survey Circular 1139. U.S. Government Printing Office, 1998

  • Yang Z, Zhou Y, Wenninger J, Uhlenbrook S (2014) A multi-method approach to quantify groundwater/surface water-interactions in the semi-arid Hailiutu River basin, northwest China. Hydrogeol J 22:527–541

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuela Lasagna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lasagna, M., De Luca, D. & Franchino, E. Nitrate contamination of groundwater in the western Po Plain (Italy): the effects of groundwater and surface water interactions. Environ Earth Sci 75, 240 (2016). https://doi.org/10.1007/s12665-015-5039-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-015-5039-6

Keywords

Navigation