Skip to main content
Log in

Modeling of landslide generated impulsive waves considering complex topography in reservoir area

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

The impulsive wave is considered as one of the most notably secondary hazards induced by landslides in reservoir areas. The impulsive wave with considerable wave amplitude is able to cause serious damage to the dam body, shoreline properties and lives. To investigate and predict the wave characteristics, many experimental studies employed the generalized channels rather than the realistic topography. Deviation from the idealized geometries may result in non-negligible effects due to the wave refraction or reflection with complex topography. To consider the topography effect, a prototype scaled experiment was conducted. A series of tests with different collocation of parameters were performed. The experimental results were then summarized to propose empirical equations to predict the maximum wave amplitude, and wave decay in channel direction. The generalized empirical equations can obtain better results for wave features prediction by compared with those derived from the idealized models. Furthermore, a 3D numerical modeling corresponding to the physical experiment was conducted based on the SPH method. The wave characteristics in the sliding and channel directions were investigated in detail including the maximum wave amplitude, wave run-up, wave arrival time and wave crest amplitude decay. The comparison between the simulation and experiment indicates the promising accuracy of the SPH simulation in determining the general features even with complex river topography. Finally, the limitation and applicability of both the experimental and numerical methods in analyzing the practical engineering problems were discussed. Combination of the both methods can benefit the hazard prevention and reduction for landslide generated impulsive waves in reservoir area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aida I (1975) Numerical experiments of the tsunami associated with the collapse of Mt. Mayuyama in 1792. J Seismol Soc Jpn 28:449–460

    Google Scholar 

  • Ataie-Ashtiani B, Nik-Khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8:263–280. doi:10.1007/s10652-008-9074-7

    Article  Google Scholar 

  • Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Numer Meth Fluids 56:209–232

    Article  Google Scholar 

  • Ataie-Ashtiani B, Yavari-Ramshe S (2011) Numerical simulation of wave generated by landslide incidents in dam reservoirs. Landslides 8:417–432. doi:10.1007/s10346-011-0258-8

    Article  Google Scholar 

  • Bosa S, Petti M (2011) Shallow water numerical model of the wave generated by the Vajont landslide. Environ Model Softw 26:406–418. doi:10.1016/j.envsoft.2010.10.001

    Article  Google Scholar 

  • Camfield FE (1980) Tsunami Engineering. Special report No.6. US Army Corps of Engineers, Costal Engineering Research Center. Fort Belvoir, Va

  • Crespo A, Gómez-Gesteira M, Dalrymple RA (2007) Boundary conditions generated by dynamic particles in SPH methods, 5th edn. CMC-TECH Science Press, Norcross, p 173

    Google Scholar 

  • Crespo AC, Dominguez JM, Barreiro A et al (2011) GPUs, a new tool of acceleration in CFD: efficiency and reliability on smoothed particle hydrodynamics methods. PLoS One 6:e20685. doi:10.1371/journal.pone.0020685

    Article  Google Scholar 

  • Crespo A, Domínguez J, Gesteira M et al (2012) User guide for DualSPHysics code. SPHysics project, v2.0 edition. http://dual.sphysics.org/files/3313/8753/4540/DualSPHysics_v3.0_GUIDE.pdf. Accessed Dec 2013

  • Dai F, Deng J, Tham L et al (2004) A large landslide in Zigui County, Three Gorges area. Can Geotech J 41:1233–1240. doi:10.1139/T04-049

    Article  Google Scholar 

  • Das K, Janetzke R, Basu D et al (2009) Numerical simulations of tsunami wave generation by submarine and aerial landslides using RANS and SPH models. In: ASME 2009 28th international conference on Ocean, Offshore and Arctic Engineering, 2009. American Society of Mechanical Engineers, pp 581–594

  • de Carvalho RF, do Carmo JSA (2007) Landslides into reservoirs and their impacts on banks. Environ Fluid Mech 7:481–493

    Article  Google Scholar 

  • Fine I, Rabinovich A, Bornhold B et al (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215:45–57. doi:10.1016/j.margeo.2004.11.007

    Article  Google Scholar 

  • Fritz HM (2001) Lituya Bay case rockslide impact and wave run-up. Sci Tsunami Hazards 19:3–22

    Google Scholar 

  • Fritz H, Hager W, Minor H-E (2003) Landslide generated impulse waves. 2. Hydrodynamic impact craters. Exp Fluids 35:520–532. doi:10.1007/s00348-003-0660-7

    Article  Google Scholar 

  • Fritz H, Hager W, Minor H-E (2004) Near field characteristics of landslide generated impulse waves. J Waterw Port Coast Ocean Eng 130:287–302

    Article  Google Scholar 

  • Geist EL, Lynett PJ, Chaytor JD (2009) Hydrodynamic modeling of tsunamis from the Currituck landslide. Mar Geol 264:41–52. doi:10.1016/j.margeo.2008.09.005

    Article  Google Scholar 

  • Gomez-Gesteira M, Crespo AJ, Rogers BD et al (2012) SPHysics–development of a free-surface fluid solver–Part 2: efficiency and test cases. Comput Geosci 48:300–307. doi:10.1016/j.cageo.2012.02.028

    Article  Google Scholar 

  • Heinrich P, Mangeney A, Guibourg S et al (1998) Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 25:3697–3700. doi:10.1029/98gl01407

    Article  Google Scholar 

  • Heinrich P, Guibourg S, Mangeney A et al (1999) Numerical modeling of a landslide-generated tsunami following a potential explosion of the Montserrat volcano. Phys Chem Earth Part A 24:163–168. doi:10.1016/S1464-1895(99)00013-7

    Article  Google Scholar 

  • Heller V (2007) Landslide generated impuls waves. Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 17531, 2007, Place

  • Heller, V, Hager WH, Minor HE (2009) Landslide generated impulse waves in reservoirs. VAW Publication, Zurich, pp 1–9

  • Heller V, Hager WH (2010) Impulse product parameter in landslide generated impulse waves. J Waterw Port Coast Ocean Eng 136:145–155. doi:10.1061/(Asce)Ww.1943-5460.0000037

    Article  Google Scholar 

  • Heller V, Hager W (2011) Wave types of landslide generated impulse waves. Ocean Eng 38:630–640. doi:10.1016/j.oceaneng.2010.12.010

    Article  Google Scholar 

  • Huang Z, Law KT, Liu H et al (2009) The chaotic characteristics of landslide evolution: a case study of Xintan landslide. Environ Geol 56:1585–1591. doi:10.1007/s00254-008-1256-6

    Article  Google Scholar 

  • Huang B, Yin Y, Chen X et al (2014) Experimental modeling of tsunamis generated by subaerial landslides: two case studies of the Three Gorges Reservoir, China. Environ Earth Sci 71:3813–3825. doi:10.1007/s12665-013-2765-5

    Article  Google Scholar 

  • Hughes SA (2005) Physical models and laboratory techniques in coastal engineering. World Scientific Publishing Co Pte Ltd, Singapore

    Google Scholar 

  • Kamphuis, J, Bowering R (1970) Impulse waves generated by landslides. In: Proceedings of 12th Coastal Engineering Conference, Washington DC, vol 1. ASCE, New York, pp 575–588

  • Li D, Yin K, Leo C (2010) Analysis of Baishuihe landslide influenced by the effects of reservoir water and rainfall. Environ Earth Sci 60:677–687. doi:10.1007/s12665-009-0206-2

    Article  Google Scholar 

  • Liu M, Liu G (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76. doi:10.1007/s11831-010-9040-7

    Article  Google Scholar 

  • McMurtry G, Watts P, Fryer G et al (2004) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar Geol 203:219–233. doi:10.1016/S0025-3227(03)00306-2

    Article  Google Scholar 

  • Mishiue M, Hinokidani O, Miyamoto K (1999) Study on the Mayuyama tsunami disaster in 1792. In: Proceedings of the 28th congress of IAHR, CD, 1999

  • Miyagi T, Kasai F, Yamashina S (2008) Huge landslide triggered by earthquake at the Aratozawa Dam area, Tohoku, Japan. In: Proceedings of the First World Landslide Forum. ICL, ISDR, Tokyo, Japan, 2008, pp 421–424

  • Miyagi T, Yamashina S, Esaka F et al (2011) Massive landslide triggered by 2008 Iwate–Miyagi inland earthquake in the Aratozawa Dam area, Tohoku, Japan. Landslides 8:99–108. doi:10.1007/s10346-010-0226-8

    Article  Google Scholar 

  • Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574. doi:10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  • Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. doi:10.1006/jcph.1994.1034

    Article  Google Scholar 

  • Noda E (1970) Water waves generated by landslides. J Waterw Harb Coast Eng Div 96:835–855

    Google Scholar 

  • Panizzo A, De Girolamo P, Di Risio M et al (2005) Great landslide events in Italian artificial reservoirs. Nat Hazard Earth Syst Sci 5:733–740

    Article  Google Scholar 

  • Pérez G, García-Navarro P, Vázquez-Cendón M (2006) One-dimensional model of shallow water surface waves generated by landslides. J Hydraul Eng 132:462–473

    Article  Google Scholar 

  • Petley D (2010) Landslide hazards. In: Alcantara-Ayala I, Goudie A (eds) Geomorphological hazards and disaster prevention. Cambridge University Press, Cambridge, pp 63–74

  • Qiu L-C (2008) Two-dimensional SPH simulations of landslide-generated water waves. J Hydraul Eng 134:668–671. doi:10.1061/(Asce)0733-9429(2008)134:5(668)

    Article  Google Scholar 

  • Quecedo M, Pastor M, Herreros M (2004) Numerical modelling of impulse wave generated by fast landslides. Int J Numer Meth Eng 59:1633–1656. doi:10.1002/nme.934

    Article  Google Scholar 

  • Risley JC, Walder JS, Denlinger RP (2006) Usoi Dam wave overtopping and flood routing in the Bartang and Panj Rivers, Tajikistan. Nat Hazards 38:375–390. doi:10.1007/s11069-005-1923-9

    Article  Google Scholar 

  • Semenza E, Ghirotti M (2000) History of the 1963 Vaiont slide: the importance of geological factors. Bull Eng Geol Environ 59:87–97

    Article  Google Scholar 

  • Vacondio R, Rogers B, Stansby P et al (2013) Variable resolution for SPH: a dynamic particle coalescing and splitting scheme. Comput Methods Appl Mech Eng 256:132–148. doi:10.1016/j.cma.2012.12.014

    Article  Google Scholar 

  • Viroulet S, Cébron D, Kimmoun O et al (2013) Shallow water waves generated by subaerial solid landslides. Geophys J Int 193:747–762. doi:10.1093/gji/ggs133

    Article  Google Scholar 

  • Walder JS, Watts P, Sorensen OE et al (2003) Tsunamis generated by subaerial mass flows. J Geophys Res: Solid Earth 1978–2012:108. doi:10.1029/2001jb000707

    Google Scholar 

  • Watts P, Grilli S, Kirby J et al (2003) Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Nat Hazard Earth Syst Sci 3(5):391–402

    Article  Google Scholar 

  • Wroniszewski PA, Verschaeve JC, Pedersen GK (2014) Benchmarking of Navier-Stokes codes for free surface simulations by means of a solitary wave. Coast Eng 91:1–17. doi:10.1016/j.coastaleng.2014.04.012

    Article  Google Scholar 

  • Zhao, L, Mao J, Bai X et al (2015) Finite element simulation of impulse wave generated by landslides using a three-phase model and the conservative level set method. Landslides 1–12. doi:10.1007/s10346-014-0552-3

Download references

Acknowledgements

This study has received support from National Natural Science Foundation of China (Grant Nos. 41002103 and 41572292). Also, this work was supported by Kyushu University Interdisciplinary Programs in Education and Projects in Research Development. These supports are gratefully acknowledged. Finally, the authors greatly appreciate the careful review and thoughtful suggestions by the anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunlong Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Chen, G., Yin, K. et al. Modeling of landslide generated impulsive waves considering complex topography in reservoir area. Environ Earth Sci 75, 372 (2016). https://doi.org/10.1007/s12665-016-5252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5252-y

Keywords

Navigation