Skip to main content

Advertisement

Log in

Protected areas may not effectively support conservation of endangered forest plants under climate change

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 27 April 2016

Abstract

Protected areas (PAs) play an important role in the conservation of valuable forest resources, and an increasing number of areas are being designated as PAs worldwide. However, climate change could drive endangered forest plants out of PAs, and impact the function of PAs to conserve endangered forest plants. Hence, it is necessary for conservation biologists to put forward a simple method to evaluate the ability of PAs to conserve endangered forest plants. Here, we studied 61 endangered forest plants from three ecoregions in China. We applied species distribution modeling to project suitable habitats of endangered forest plants, and used geographical information system to compute whether PAs could support the conservation of endangered forest plants. With climate change caused by increasing gas concentration, the overall ability of PAs to support the conservation of endangered forest plants will likely decrease compared to the conservation needs of ecoregions. We found that PAs have varying abilities to conserve endangered forest plants in different ecoregions. For temperate broadleaf mixed forests and tropical and subtropical moist broadleaf forests, we found that climate change will decrease the PAs’ ability to support the conservation of endangered forest plants effectively in the existing forest landscape. In contrast, we found that temperate conifer forests will likely remain effective. Using this information, we proposed the conservation plans for different ecoregions under climate change. For PAs with limited ability to support the conservation of endangered forest plants in an ecoregion, we recommend expanding the areas of forests and PAs based on the suitable habitats of the endangered forest plants. For PAs with stable ability to support the conservation of endangered forest plants in an ecoregion, we recommend expanding the conservation areas in PAs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams HD, Guardiola-Claramonte M, Barron-Gafford GA, Villegas JC, Breshears DD, Zou CB, Troch PA, Huxman TE (2009) Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global change type drought. Proc Natl Acad Sci USA 106:7063–7066

    Article  Google Scholar 

  • Alagador D, Martins MJ, Cerdeira JO, Cabeza M, Araújo MB (2011) A probability-based approach to match species with reserves when data are at different resolutions. Biol Conser 144:811–820

    Article  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears D, Hogg E, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim J, Allard G, Running S, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Andam KS, Ferraro PJ, Pfaff A, Sanchez-Azofeifa GA, Robalino JA (2008) Measuring the effectiveness of protected area networks in reducing deforestation. Proc Natl Acad Sci USA 105:16089–16094

    Article  Google Scholar 

  • Andrello M, Jacobi MN, Manel S, Thuiller W, Mouillot D (2014) Extending networks of protected areas to optimize connectivity and population growth rate. Ecography. doi:10.1111/ecog.00975

    Google Scholar 

  • Araujo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484–492

    Article  Google Scholar 

  • Arino O, Ramos Perez J, Kalogirou V, Bontemps S, Defourny P, Van Bogaert E (2012) Global land cover map for 2009 (GlobCover 2009)

  • Brown HCP, Smit B, Somorin OA, Sonwa DJ, Nkem JN (2014) Climate Change and Forest Communities: prospects for Building Institutional Adaptive Capacity in the Congo Basin Forests. Ambio 43:759–769

    Article  Google Scholar 

  • Calabrese JM, Certain G, Kraan C, Dormann CF (2014) Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob Ecol Biogeogr 23:99–112

    Article  Google Scholar 

  • Corlett RT, Westcott DA (2013) Will plant movements keep up with climate change? Trends Ecol Evol 28:482–488

    Article  Google Scholar 

  • D’Amen M, Bombi P, Pearman PB, Schmatz DR, Zimmermann NE, Bologna MA (2011) Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol Conserv 144:989–997

    Article  Google Scholar 

  • Danese M, Lazzari M, Murgante B (2008) Kernel density estimation methods for a geostatistical approach in seismic risk analysis: the case study of potenza hilltop town (Southern Italy). In: Computational science and its applications—ICCSA 2008. Springer, Berlin, pp 415–429

  • DeFries R, Hansen A, Newton AC, Hansen MC (2005) Increasing isolation of protected areas in tropical forests over the past twenty years. Ecol Appl 15:19–26

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Gallagher RV, Hughes L, Leishman MR (2012) Species loss and gain in communities under future climate change: consequences for functional diversity. Ecography 36:531–540

    Article  Google Scholar 

  • Gillson L, Dawson TP, Jack S, McGeoch MA (2013) Accommodating climate change contingencies in conservation strategy. Trends Ecol Evol 28:135–142

    Article  Google Scholar 

  • Goldenshluger A, Lepski O (2011) Bandwidth selection in kernel density estimation: oracle inequalities and adaptive minimax optimality. Ann Stat 39:1608–1632

    Article  Google Scholar 

  • Gormley AM, Forsyth DM, Griffioen P, Lindeman M, Ramsey DS, Scroggie MP, Woodford L (2011) Using presence-only and presence–absence data to estimate the current and potential distributions of established invasive species. J Appl Ecol 48:25–34

    Article  Google Scholar 

  • Hanewinkel M, Cullmann DA, Schelhaas MJ, Nabuurs GJ, Zimmermann NE (2013) Climate change may cause severe loss in the economic value of European forest land. Nat Clim Change 3:203–207

    Article  Google Scholar 

  • Hannah L, Midgley GF, Millar D (2002) Climate change-integrated conservation strategies. Glob Ecol Biogeogr 11:485–495

    Article  Google Scholar 

  • Harte J, Ostling A, Green JL, Kinzig A (2004) Biodiversity conservation: climate change and extinction risk. Nature. doi:10.1038/nature02718

    Google Scholar 

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hou X (2001) Vegetation atlas of China. Chinese Academy of Science, The Editorial Board of Vegetation Map of China. Scientific Press, Beijing

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York

  • Kim HG, Lee DK, Park C, Kil S, Son Y, Park JH (2015) Evaluating landslide hazards using RCP 4.5 and 8.5 scenarios. Environ Earth Sci 73:1385–1400

    Article  Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Loiselle BA, Howell CA, Graham CH, Goerck JM, Brooks T, Smith KG, Williams PH (2003) Avoiding pitfalls of using species distribution models in conservation planning. Conserv Biol 17:1591–1600

    Article  Google Scholar 

  • Mamet SD, Chun KP, Metsaranta JM, Barr AG, Johnstone JF (2015) Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest. Environ Res Lett 10:084021

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Millar CI, Stephenson NL, Stephens SL (2007) Climate change and forests of the future: managing in the face of uncertainty. Ecol Appl 17:2145–2151

    Article  Google Scholar 

  • Moilanen A, Anderson BJ, Arponen A, Pouzols FM, Thomas CD (2013) Edge artefacts and lost performance in national versus continental conservation priority areas. Divers Distrib 19:171–183

    Article  Google Scholar 

  • Olson M, Dinerstein E, Wikramanayake D, Burgess D, Powell G, Underwood E, D’amico J, Itoua I, Strand H, Morrison J, Loucks C, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: a new map of life on Earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938

    Article  Google Scholar 

  • Park NW (2015) Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ Earth Sci 73:937–949

    Article  Google Scholar 

  • Peterson AT, Li X (2014) Niche-based projections of wetlands shifts with marine intrusion from sea level rise: an example analysis for North Carolina. Environ Earth Sci 73:1479–1490

    Article  Google Scholar 

  • Ponce-Reyes R, Reynoso-Rosales VH, Watson JE, VanDerWal J, Fuller RA, Pressey RL, Possingham HP (2012) Vulnerability of cloud forest reserves in Mexico to climate change. Nat Clim change 2:448–452

    Article  Google Scholar 

  • Pretty J, Smith D (2004) Social capital in biodiversity conservation and management. Conserv Biol 18:631–638

    Article  Google Scholar 

  • Steneck RS, Graham MH, Bourque BJ, Corbett D, Erlandson JM, Estes JA, Tegner MJ (2002) Kelp forest ecosystems: biodiversity, stability, resilience and future. Environ Conserv 29:436–459

    Article  Google Scholar 

  • Thomas CD (2011) Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol Evol 26:216–221

    Article  Google Scholar 

  • Wan J, Wang C, Han S, Yu J (2014) Planning the priority protected areas of endangered orchid species in northeastern China. Biodivers Conserv 23:1395–1409

    Article  Google Scholar 

  • Wang C, Wan J, Mu X, Zhang Z (2015) Management planning for endangered plant species in priority protected areas. Biodivers Conserv 24:2383–2397

    Article  Google Scholar 

  • Warren R, Price J, Fischlin A, de la Nava SantosS, Midgley G (2011) Increasing impacts of climate change upon ecosystems with increasing global mean temperature rise. Clim Change 106:141–177

    Article  Google Scholar 

  • Wise RM, Reyers B, Guo C, Midgley GF, De Lange W (2012) Costs of expanding the network of protected areas as a response to climate change in the cape floristic region. Conserv Biol 26:397–407

    Article  Google Scholar 

  • Yin Y, Liu H, Liu G, Hao Q, Wang H (2013) Vegetation responses to mid-Holocene extreme drought events and subsequent long-term drought on the southeastern Inner Mongolian Plateau, China. Agric For Meteorol 178:3–9

    Article  Google Scholar 

  • Yu J, Wang C, Wan J, Han S, Wang Q, Nie S (2014) A model-based method to evaluate the ability of nature reserves to protect endangered tree species in the context of climate change. For Ecol Manag 327:48–54

    Article  Google Scholar 

  • Zhang MG, Zhou ZK, Chen WY, Cannon CH, Raes N, Slik JW (2014) Major declines of woody plant species ranges under climate change in Yunnan, China. Divers Distrib 20:405–415

    Article  Google Scholar 

  • Zhang Z, Yan Y, Tian Y, Li J, He JS, Tang Z (2015) Distribution and conservation of orchid species richness in China. Biol Conserv 181:64–72

    Article  Google Scholar 

  • Zome RJ, Xu J, Wang M, Trabucco A, Li Z (2015) Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biol Conserv 184:335–345

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the project entrusted to the Protection Division under the State Forestry Bureau, “Investigation and in situ conservation of Pyrus hopeiensis, the plant species with extremely small populations” (2) and the Fundamental Research Funds for the Central Universities (BLYJ201501). We thank the following National Nature Reserves for the use of their species data: Banqiao, Gujingyuan, Qingliangfeng, Songshan, Daiyunshan, E’meifeng, Longqishan, Minjianghekoushidi, Minjiangyuan, Tingjiangyuan, Xiongjianghuangchulin, Zhangjiangkouhongshulinshidi, Gansulianhuashan, Qinzhouzhenxishuishengyeshengdongwu, Taizishan, Yuhe, Haifengniaolei, Lianzhoutianxin, Luokeng’exi, Shimentai, Xiangtoushan, Yunkaishan, Bangliangchangbiyuan, Chongzuobaitouyehou, Daguishan’exi, Dayaoshan, Encheng, Fangchengjinhuacha, Huaping, Jiuwanshan, Qichong, Shiwandashan, Yinzhulaoshanziyuanlengshan, Yuanbaoshan, Dashahe, Fodingshan, Leigongshan, Yinggeling, Changlihuangjinhaian, Hengshuihu, Qingyazhai, Tuoliang, Xiaowutaishan, Baotianman, Henandabieshan, Gaoleshan, Huangheshidi, Jigongshan, Beijicun, Zhuonahe, Daxiagu, Mudanjiangdongbeihu, Dongfanghong, Duobuku’er, Fenglin, Heilongjiangfenghuangshan, Gongbielahe, Lingfeng, Maolangou, Mingshui, Mudanfeng, Pingdingshan, Qixingdongbeihu, Sanhuanpao, Shankou, Taipinggou, Wuyiling, Wuyu’erhe, Wudalianchi, Xiaobeihu, Xinqingbaitouhe, Youhao, Zhongyangzhanheizuisongji, Badongjinsihou, Duheyuan, Hubeidabieshan, Mulinzi, Nanhe, Qizimeishan, Saiwudang, Sanxiadalaoling, Shennongjia, Shibalichangxia, Wudaoxia, Xianfengzhongjianhedani, Xingdoushan, Yerengou, Baiyunshan, Dong’anshunhuangshan, Dongdongtinghu, Gaowangjie, Hupingshan, Jintongshan, Jiuyishan, Wuyunjie, Xidongtinghu, Baishanyuanshe, Boluohu, Hunchundongbeihu, Ji’an, Jingyu, Shihu, Wangqing, Yanminghu, Dafengmilu, Yanchengshidizhenqin, Ganjiangyuan, Jiulingshan, Lushan, Qiyunshan, Tongboshan, Wuyuansenlinniaolei, Yangjifeng, Bailiangshan, Daheishan, Hongluoshan, Louzishan, Nulu’erhushan, Qinglonghe, Shedaolaotieshan, Yalujiangkoushidi, Zhanggutai, A’lu, Bilahe, Gaogesitaihanwula, Hanshan, Hanma, Qingshan, Wulanba, Datongbeichuanheyuanqu, Huanghesanjiaozhou, Nansihu, Heichashan, Lingkongshan, Guanyinshan, Hanchenghuanglongshanhemaji, Huangbaiyuan, Huanglongshanhemaji, Luoyangzhenxishuishengdongwu, Micangshan, Motianling, Pingheliang, Taibaishan, Taibaixushuihe, Wuliangshan, Zhouzhilaoxiancheng, Anzihe, Baihe, Caopo, Gexigou, Heizhugou, Jiudingshan, Laojunshan, Liziping, Nuoshuihezhenxishuishengdongwu, Qianfoshan, Xiaozhaizigou, Xuebaoding, Ailaoshan, Daweishan, Jiaozishan, Lvchunhuanglianshan, Nan’gunhe, Tongbiguan, Wenshan, Wumengshan, Yuanjiang, Yunlongtianchi, Jiushanliedao, Wuyanling, Changxingyangzi’e, Dabashan, Jinfoshan, Wulipo, and Xuebaoshan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xiang Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, CJ., Wan, JZ., Zhang, GM. et al. Protected areas may not effectively support conservation of endangered forest plants under climate change. Environ Earth Sci 75, 466 (2016). https://doi.org/10.1007/s12665-016-5364-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-016-5364-4

Keywords

Navigation