Skip to main content
Log in

TEM and FESEM characterization of asbestiform and non-asbestiform actinolite fibers in hydrothermally altered dolerites (France)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

This paper provides new mineralogical and morphological characterizations of calcic amphiboles from hydrothermally altered dolerites from France to discuss their potential to contain naturally occurring asbestos (NOA) and to release elongated mineral particles corresponding to asbestos fibers, or asbestos-like fibers, into the air. The calcic amphiboles were characterized using electron microprobe analysis, scanning and transmission electron microscopy. The results underline that fibrous occurrences of actinolite and ferro-actinolite regularly occur in hydrothermally altered dolerites, both in the groundmass and in quartz veins. In the groundmass, actinolitic amphiboles crystallize at the expense of magmatic clinopyroxenes and are rarely fibrous. Conversely, actinolite and ferro-actinolite fibers from quartz veins are potentially asbestiform to clearly asbestiform. The identification of quartz veins in hydrothermally altered dolerites is, therefore, an important parameter which should draw attention to the possible presence of asbestiform actinolite fibers. The mineralogical characterization of such veins as well as the estimation of their thickness and density is an important point to consider during studies involving NOA issues. Moreover, the degree of weathering of the dolerites, which directly affects the ability of non-asbestiform actinolite crystals to dissociate into very thin fibers, regarded as cleavage fragments instead of as asbestos, is also a key parameter to consider. Hydrothermally altered dolerites are common rocks likely to be exploited by the quarrying industry to produce aggregates or to be affected by construction works. Due to the abundance of actinolite fibers that they may contain locally, these rocks become priority targets to be monitored in terms of geological characterization and airborne fiber emission to ensure the protection of populations and workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ANSES (2015) Rapport d’expertise collective relatif aux effets sanitaires et à l’identification des fragments de clivage d’amphiboles issus des matériaux de carrière. Maisons-Alfort

  • Armbruster T, Bonazzi P, Akasaka M, Bermanec V, Chopin C, Giéré R, Heuss-Assbichler S, Liebscher A, Menchetti S, Pan Y, Pasero M (2006) Recommended nomenclature of epidote-group minerals. Eur J Mineral 18:551–567

    Article  Google Scholar 

  • AS (Australian Standard) (2004) Method for the qualitative identification of asbestos in bulk samples. AS 4964–2004

  • Barton M, van Bergen MJ (1984) Secondary ilvaite in a dolerite dyke from Rogaland, SW Norway. Mineral Mag 48:449–456

    Article  Google Scholar 

  • Bevins RE, Merriman RJ (1988) Compositional controls on coexisting prehnite-actinolite and prehnite-pumpellyite facies assemblages in the Tal y fan métabasite intrusion, North Wales: implications for Caledonian metamorphic field gradients. J Metamorph Geol 6:17–39

    Article  Google Scholar 

  • Bouton P, Poncet D, Branger P, Camuzard JP (2008) Notice explicative, Carte géol. France (1/50 000), feuille Mazières-en-Gâtine (588). BRGM, Orléans

  • Bruno C, Tumino R, Fazzo L, Cascone G, Cernigliaro A, De Santis M, Concetta Giurdanella M, Nicita C, Concetta Rollo P, Scondotto S, Spata E, Zona A, Comba P (2014) Incidence of pleural mesothelioma in a community exposed to fibres with fluoro-edenitic composition in Biancavilla (Sicily, Italy). Ann Ist Super Sanità 50:111–118

    Google Scholar 

  • Casteras M (1971) Notice explicative, Carte géol. In: France (1/50 000), feuille Tardets-Sorholus (1050). BRGM, Orléans

  • Cocherie A, Rossi P, Fanning CM, Guerrot C (2005) Comparative use of TIMS and SHRIMP for U-Pb zircon dating of A-type granites and mafic tholeiitic layered complexes and dykes from the Corsican batholith (France). Lithos 82:185–219

    Article  Google Scholar 

  • Cogné J, Jeannette D, Auvray B, Morzadec-Kerfourn MT, Larsonneur C, Bambier A (1980) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Cast (206). BRGM, Orléans

  • Day HW, Springer RK (2005) The first appearance of actinolite in the prehnite-pumpellyite facies, Sierra Nevada, California. Can Mineral 43:89–104

    Article  Google Scholar 

  • Demange M, Guérangé-Lozes J, Guérangé B (1995) Notice explicative, Carte géol. France (1/50 000), feuille Lacaune (987). BRGM, Orléans

  • Egal E, Thiéblemont D, Guennoc, Hallégouët B (2005) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Brieuc (243). BRGM, Orléans

  • EPA (Environmental Protection Agency) (1993). Test method: method for determination of asbestos in bulk building materials. EPA/600/R-93/116

  • EPC (European Parliament and Council) (2009). Directive 2009/148/CE du Parlement européen et du Conseil concernant la protection des travailleurs contre les risques liés à une exposition à l’amiante pendant le travail. Journal officiel de L’Union européenne 330: 28–36

    Google Scholar 

  • Foster M (1962) Interpretation and a classification of the chlorite. US Geological Survey Professional Paper, pp 1–33

  • Franzson H, Zierenberg R, Schiffman P (2008) Chemical transport in geothermal systems in Iceland. Evidence from hydrothermal alteration. J Volcanol Geoth Res 173:217–229

    Article  Google Scholar 

  • Gianfagna A, Oberti R (2001) Fluoro-edenite from Biancavilla (Catania, Sicily, Italy): Crystal chemistry of a new amphibole end-member. Am Miner 86:1489–1493

    Article  Google Scholar 

  • Gianfagna A, Ballirano P, Bellatreccia F, Bruni B, Paoletti L, Oberti R (2003) Characterization of amphibole fibres linked to mesothelioma in the area of Biancavilla, Eastern Sicily, Italy. Mineral Mag 67:1221–1229

    Article  Google Scholar 

  • Guérangé-Lozes J, Mouline MP (1998) Notice explicative, Carte géol. France (1/50 000), feuille Carmaux (933). BRGM, Orléans

  • Guérangé-Lozes J, Guérangé B, Mouline MP, Delsahut B (1996) Notice explicative, Carte géol. France (1/50 000), feuille Réalmont (959). BRGM, Orléans

  • Guillot PL, Floc’h JP, Santallier D, Recoing M (1979) Notice explicative, Carte géol. France (1/50 000), feuille Saint-Yrieix la Perche (736). BRGM, Orléans

  • Gunter ME, Darby-Diar M, Lanzirotti A, Tucker JM, Speicher EA (2011) Differences in Fe-redox for asbestiform and nonasbestiform amphiboles from the former vermiculite mine, near Libby, Montana (2011). Am Miner 96: 1414–1417

    Article  Google Scholar 

  • Hanson RE, Gose WA, Crowley JL, Ramezani J, Bowring SA, Bullen DS, Hall RP, Pancake JA, Mukwakwami J (2004) Paleoproterozoic intraplate magmatism and basin development on the Kaapvaal Craton: Age, paleomagnetism and geochemistry of ~ 1.93 to ~ 1.87 Ga post-Waterberg dolerites. S Afr J Geol 107:233–254

    Article  Google Scholar 

  • Harper M, Lee EG, Doorn SS, Hammond O (2008) Differentiating non-asbestiform amphibole and amphibole asbestos by size characteristics. J Occup Environ Hyg 5:761–770

    Article  Google Scholar 

  • Harper M, Lee EG, Slaven JE, Bartley DL (2012) An inter-laboratory study to determine the effectiveness of procedures for discriminating amphibole asbestos fibers from amphibole cleavage fragments in fiber counting by phase-contrast microscopy. Ann Occup Hyg 6:645–659

    Google Scholar 

  • Harris KE, Bunker KL, Strohmeier BR, Hoch R, Lee RJ (2007) Discovering the true morphology of amphibole minerals: complementary TEM and FESEM characterization of particles in mixes mineral dust. In: Mendez-Vilas A and Diaz J (eds) Modern research and educational topics in microscopy. Formatex Microscopy Book ser. no. 3, vol. 2. Formatex Research Center, Badajoz, Spain, pp 643–650

    Google Scholar 

  • Hawthorne FC, Oberti R, Harlow GE, Maresch WV, Martin RF, Schumacher JC, Welch MD (2012) Nomenclature of the amphibole supergroup. Am Miner 97:2031–2048

    Article  Google Scholar 

  • Hebert R (1993) Evolution tectonométamorphique d’un arc insulaire au Protérozoïque supérieur: le domaine de Saint-Brieuc (Massif Armoricain). Documents BRGM, p 228

  • HSE (Health and Safety Executive) (2006) Asbestos: The analysts’ guide for sampling, analysis and clearance procedures

  • IARC (International Agency for Research on Cancer) (1987) IARC Monographs on the evaluation of carcinogenic risks of chemicals to humans. Silica some silicates, 42, Lyon

  • IARC (International Agency for Research on Cancer) (2012) IARC Monographs on the evaluation of carcinogenic risks to humans. arsenic, Metals, Fibres and Dusts, 100C, Lyon

  • IARC (International Agency for Research on Cancer) (2014) Carcinogenicity of fluoro-edenite, silicon carbide fibres and whiskers, and carbon nanotubes. The Lancet 15: 1427–1428

    Article  Google Scholar 

  • Kazan-Allen L (2005) Asbestos and mesothelioma: Worldwide trends. Lung Cancer 49S1:S3-S8

    Google Scholar 

  • Lahaye Y, Blais S, Auvray B, Ruffet G (1995) Le volcanisme fissural paléozoïque du domaine nord-armoricain. Bull Soc Géol Fr Paris 166/5:601–612

    Google Scholar 

  • Lamare P, Destombes JP (1964) Notice explicative, Carte géol. France (1/50 000), feuille Espelette (1026). BRGM, Orléans

  • Langer AM (2008) Identification and enumeration of asbestos fibers in the mining environment: Mission and modification to the Federal Asbestos Standard. Regul Toxicol Pharmacol 52:207–217

    Article  Google Scholar 

  • Langer AM, Nolan RP, Addison J (1991) Distinguishing between Amphibole Asbestos Fibers and Elongate Cleavage Fragments of their Non-Asbestos Analogues. In: Brown RC, Hoskins JA, Johnson NF (eds) Mechanisms in fibre carcinogenesis. NATO ASI Series (Series A: Life Sciences), vol 223. Springer, Boston, MA

    Google Scholar 

  • Le Gall J (1999) Les dolérites et basaltes tholéiitiques varisques du domaine nord-est armoricain. Géologie de la France 4:3–25

    Google Scholar 

  • Lee RJ, Strohmeier BR, Bunker KL, Van Orden DR (2008) Naturally occurring asbestos—A recurring public policy challenge. J Hazard Mater 153:1–21

    Article  Google Scholar 

  • Lee RJ, Van Orden DR, Allison KA, Bunker KL, Huntington C (2009) Characterization of airborne amphibole particles in Libby, MT. Indoor Built Environ 18:524–530

    Article  Google Scholar 

  • Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11

    Article  Google Scholar 

  • Mäkitie H, Data G, Isabyrie E, Mänttäri I, Huhma H, Klausen MB, Pakkanen L, Virransalo P (2014) Petrology, geochronology and emplacement model of the giant 1.37 Ga arcuate Lake Victoria dyke swarm on the margin of a large igneous province in eastern Africa. J Afr Earth Sc 97:273–296

    Article  Google Scholar 

  • Meeker GP, Bern AM, Brownfield IK, Lowers HA, Sutley SJ, Hoefen TM, Vance JS (2003) The composition and morphology of amphiboles from the Rainy Creek Complex, near Libby, Montana. Am Miner 88:1955–1969

    Article  Google Scholar 

  • Merlet C (1992) Quantitative Electron Probe Microanalysis: a new accurate (Φρz) description. Mikrochimica Acta [Supp] 12:107–115

    Article  Google Scholar 

  • Metcalf RV, Buck BJ (2015) Genesis and health risk implications of an unusual occurrence of fibrous NaFe3+ amphibole. Geology 43:63–66

    Article  Google Scholar 

  • Montigny R, Azambre B, Rossy M, Thuizat R (1986) K-Ar study of Cretaceous magmatism and metamorphism in the Pyrenees: age and length of rotation of the Iberian Peninsula. Tectonophysics 129:257–273

    Article  Google Scholar 

  • NIOSH (National Institute for Occupational Safety and Health) (2011) Asbestos fibers and other elongate mineral particles: state of roadmap for research. Curr Intell Bull 62:154

    Google Scholar 

  • NIST (National Institute for Standards and Technology) (2006) Bulk asbestos analysis. NIST Handbook, pp 150–153

  • Offler R (1984) Subcalcic, Fe-rich amphiboles in meta-dolerites, Glenrock Station, NSW, Australia. Mineral Mag 48:47–52

    Article  Google Scholar 

  • Oliver GJH, McAlpine RR (1998) Occurrence of a sheeted dolerite dyke complex in the Ballantrae ophiolite. Scotland Geol Mag 135(4):509–517

    Article  Google Scholar 

  • Passchier CW, Trouw RAJ (1996) Microtectonics. Springer-Verlag, Berlin

    Google Scholar 

  • Perkins RL, Harvey BW (1993) Method for the determination of asbestos in bulk building materials. U.S. Environmental Protection Agency, EPA/600/R-93/116

  • Pochon A, Poujol M, Gloaguen E, Branquet Y, Cagnard F, Gumiaux C, Gapais D (2016) U-Pb LA-ICP-MS dating of apatite in mafic rocks: Evidence for a major magmatic event at the Devonian-Carboniferous boundary in the Armorican Massif (France). Am Miner 101:2430–2442

    Article  Google Scholar 

  • Potdevin JL, Goffette O (1991) Les assemblages métamorphiques du filon de diabase de la Grande Commune (massif de Rocroi); des témoins d’une évolution rétrograde varisque en Ardenne. Comptes Rendus de l’Académie des Sciences, Paris, Tome 312, série II: pp 1545–1550

  • Rigopoulos I, Tsikouras B, Pomonis P, Hatzipanagiotou K (2010) The influence of alteration on the engineering properties of dolerites: the examples from the Pindos and Vourinos ophiolites (northern Greece). Int J Rock Mech Min Sci 47:69–80

    Article  Google Scholar 

  • Rose NM, Bird DK (1994) Hydrothermally altered dolerite dykes in East Greenland: implications for Ca-metasomatism of basaltic protoliths. Contrib Miner Petrol 116:420–432

    Article  Google Scholar 

  • Ross M, Langer AM, Nord GL, Nolan RP, Lee RJ, Van Orden DR, Addison J (2008) The mineral nature of asbestos. Regul Toxicol Pharmacol 52:26–30

    Article  Google Scholar 

  • Rossi P, Cocherie A, Fanning CM, Ternet Y (2003) Datation U-Pb sur zircons des dolérites tholéiitiques pyrénéennes (ophites) à la limite Trias-Jurassique et relations avec les tufs volcaniques dits “infra-liasiques” nord-pyrénéens. C R Geosci 355:1071–1080

    Article  Google Scholar 

  • Sengupta P, Ray A, Pramanik S (2014) Mineralogical and chemical characteristics of newer dolerite dyke around Keonjhar, Orissa: Implication for hydrothermal activity in subduction zone setting. J Earth Syst Sci 123/4:887–904

    Article  Google Scholar 

  • Shibuya T, Aoki K, Komiya T, Maruyama S (2010) Stratigraphy-related, low-pressure metamorphism in the Hardey syncline, Hamersley Province, Western Australia. Gondwana Res 18:213–221

    Article  Google Scholar 

  • Trautmann F, Carn A (1997) Notice explicative, Carte géol. France (1/50 000), feuille La Guerche de Bretagne (354). BRGM, Orléans

    Google Scholar 

  • Ubide T, Wijbrans JR, Galé C, Arranz E, Lago M, Larrea P (2014) Age of the Cretaceous alkaline magmatism in northeast Iberia: Implications for the Alpine cycle in the Pyrenees. Tectonics 33:1444–1460

    Article  Google Scholar 

  • Van Gosen BS (2007) The geology of asbestos in the United States and its practical applications. Environmental Eng Geosci 13:55–68

    Article  Google Scholar 

  • Van Gosen BS, Lowers HA, Sutley SJ, Gent CA (2004) Using the geologic setting of talc deposits as an indicator of amphibole asbestos content. Environ Geol 45:920–939

    Article  Google Scholar 

  • Van Orden DR, Allison KA, Lee RJ (2008) Differentiating amphibole asbestos from non-asbestos in a complex mineral environment. Indoor Built Environ 17:58–68

    Article  Google Scholar 

  • Van Orden DR, Lee RJ, Hefferan CM, Schlaegle S, Sanchez M (2016) Determination of the size distribution of amphibole asbestos and amphibole non-asbestos mineral particles. The Microscope 64/1:13–25

    Google Scholar 

  • Verkouteren JR, Wylie AG (2002) Anomalous optical properties of fibrous tremolite, actinolite, and ferro-actinolite. Am Miner 87:1090–1095

    Article  Google Scholar 

  • Vignaroli G, Ballirano P, Belardi G, Rossetti F (2014) Asbestos fibre identification vs. Evaluation of asbestos hazard in ophiolitic rocks mélanges, a case study from the Ligurian Alps (Italy). Environ Earth Sci 72:3679–3698

    Article  Google Scholar 

  • WHO (World Health Organization) (1986) Asbestos and other natural mineral fibres, environmental health criteria 53. WHO, Geneva

    Google Scholar 

  • WHO (World Health Organization) (1997) Determination of airborne fibre number concentrations; a recommended method, by phase contrast optical microscopy (membrane filter method). WHO, Geneva

    Google Scholar 

  • Wylie AG, Huggins CW (1980) Characteristics of a potassian winchite-asbestos from the Allamoore talc district, Texas. Can Mineral 18:101–107

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Directorate-General for Risk Prevention of the French Ministry of Ecological and Solidarity Transition and the BRGM for the financial support. The authors also thank the two anonymous reviewers for their constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Lahondère.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahondère, D., Cagnard, F., Wille, G. et al. TEM and FESEM characterization of asbestiform and non-asbestiform actinolite fibers in hydrothermally altered dolerites (France). Environ Earth Sci 77, 385 (2018). https://doi.org/10.1007/s12665-018-7549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-018-7549-5

Keywords

Navigation