Skip to main content

Advertisement

Log in

Mechanical earth modeling and fault reactivation analysis for CO2-enhanced oil recovery in Gachsaran oil field, south-west of Iran

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

There is a huge potential for CO2-EOR and CO2 storage in depleted carbonate reservoirs in the south-west of Iran. In the first step of a CO2-EOR operation, a geomechanical assessment is needed to find out geological conditions, mechanical and strength properties of formation rocks (e.g., reservoir rock and caprock), in situ stress magnitudes and orientation and in situ pore pressure profile. An integrated analysis is performed in this work for geomechanical assessment of a reservoir–caprock system in Gachsaran oil field, south-west of Iran. A one-dimensional mechanical earth model (MEM) is built for 47 wells in the studied field based on drilling and logging data, laboratory and in situ tests. Static elastic and strength parameters of various formation rocks (limestone, dolomite, anhydrite, gray marl and salt) are evaluated from laboratory experiments. Empirical correlations are obtained to convert dynamic rock properties and well-log data to static elastic properties and strength parameters. The initial in situ pore pressure is calculated using modified Eaton method. In situ stresses state is evaluated based on the poroelastic method and calibrated using LOT and XLOT tests. The orientation of in situ stresses is obtained based on image logs. Fractures and faults analysis is performed to determine their orientations. An analytical analysis is performed to estimate the maximum sustainable CO2 injection pressure to prevent fault reactivation. This study presents a comprehensive method to reservoir and caprock characterization using laboratory and well-log data and 1D mechanical earth model. It helps the analysis of the geomechanical problems during CO2-EOR and provides the necessary information to build 3D geomechanical model for numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Afsari M, Amani M, Razmgir SAM, Karimi H, Yousefi S (2010) Using drilling and logging data for developing 1d mechanical earth model for a mature oil field to predict and mitigate wellbore stability challenges. In: International Oil and Gas Conference and Exhibition in China

  • Aghajanpour A, Fallahzadeh SH, Khatibi S, Hossain MM, Kadkhodaie A (2017) Full waveform acoustic data as an aid in reducing uncertainty of mud window design in the absence of leak-off test. J Nat Gas Sci Eng 45:786–796

    Article  Google Scholar 

  • Alam MM, Hjuler ML, Christensen HF, Fabricius IL (2014) Petrophysical and rock-mechanics effects of CO2 injection for enhanced oil recovery: Experimental study on chalk from South Arne field, North Sea. J Pet Sci Eng 122:468–487. https://doi.org/10.1016/j.petrol.2014.08.008

    Article  Google Scholar 

  • Altmann JB, Müller TM, Müller BIR, Tingay MR, Heidbach O (2010) Poroelastic contribution to the reservoir stress path. Int J Rock Mech Min Sci 47:1104–1113. https://doi.org/10.1016/j.ijrmms.2010.08.001

    Article  Google Scholar 

  • Altmann JB, Müller BIR, Müller TM, Heidbach O, Tingay MR, Weißhardt A (2014) Pore pressure stress coupling in 3D and consequences for reservoir stress states and fault reactivation. Geothermics 52:195–205. https://doi.org/10.1016/j.geothermics.2014.01.004

    Article  Google Scholar 

  • Amiri M, Lashkaripour GR, Ghabezloo S, Hafezi Moghaddas N, Heidari Tajareh M (2018) 3D spatial model of Biot’s effective stress coefficient using well logs, laboratory experiments and geostatistical method in the Gachsaran oil field, south-west of Iran. Bull Eng Geol Environ. https://doi.org/10.1007/s10064-018-1423-2

    Article  Google Scholar 

  • Ampomah W, Balch R, Cather M, Rose-Coss D, Dai Z, Heath J, Dewers T, Mozley P (2016) Evaluation of CO2 storage mechanisms in CO2 enhanced oil recovery sites: application to morrow sandstone reservoir. Energy Fuels 30:8545–8555

    Article  Google Scholar 

  • Ampomah W, Balch RS, Cather M, Will R, Gunda D, Dai Z, Soltanian MR (2017) Optimum design of CO2 storage and oil recovery under geological uncertainty. Appl Energy 195:80–92

    Article  Google Scholar 

  • Anderson EM (1951) The dynamics of faulting. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Angelier J (1994) Fault slip analysis and paleostress reconstruction. In: Hancock PL (ed) Continental Deformation. Pergamon, Oxford, pp 101–120

    Google Scholar 

  • ASTM C830-00 (2016) Standard test methods for apparent porosity, liquid absorption, apparent specific gravity, and bulk density of refractory shapes by vacuum pressure. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D2845-08 (2008) Standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D2938-95 (2005) Standard test method for unconfined compressive strength of intact rock core specimens. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D3148-02 (2002) Standard test method for elastic moduli of intact rock core specimens in uniaxial compression. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D3967-16 (2016) Standard test method for splitting tensile strength of intact rock core specimens. ASTM International, West Conshohocken

    Google Scholar 

  • ASTM D7012-14 (2014) Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International, West Conshohocken

    Google Scholar 

  • Azadpour M, Shad Manaman N (2015) Determination of pore pressure from sonic log: a case study on one of Iran carbonate reservoir rocks. Iran J Oil Gas Sci Technol 4:37–50

    Google Scholar 

  • Azadpour M, Manaman NS, Kadkhodaie-Ilkhchi A, Sedghipour M-R (2015) Pore pressure prediction and modeling using well-logging data in one of the gas fields in south of Iran. J Pet Sci Eng 128:15–23

    Article  Google Scholar 

  • Bachu S (2000) Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Convers Manag 41:953–970

    Article  Google Scholar 

  • Bachu S (2016) Identification of oil reservoirs suitable for CO2-EOR and CO2 storage (CCUS) using reserves databases, with application to Alberta, Canada. Int J Greenh Gas Control 44:152–165. https://doi.org/10.1016/j.ijggc.2015.11.013

    Article  Google Scholar 

  • Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Convers Manag 44:3151–3175

    Article  Google Scholar 

  • Bai M (2014) Risk assessment for CO2 leakage along abandoned wells using a monte carlo simulation in a CO2 sequestration site. Pet Sci Technol 32:1191–1200

    Article  Google Scholar 

  • Barton CA, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 23:683–686

    Article  Google Scholar 

  • Basu A, Mishra DA, Roychowdhury K (2013) Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull Eng Geol Environ 72:457–475

    Article  Google Scholar 

  • Belmokhtar M, Delage P, Ghabezloo S, Tang AM, Menaceur H, Conil N (2017) Poroelasticity of the Callovo–Oxfordian claystone. Rock Mech Rock Eng 50:871–889

    Article  Google Scholar 

  • Benson SM, Cole DR (2008) CO2 sequestration in deep sedimentary formations. Elements 4:325–331. https://doi.org/10.2113/gselements.4.5.325

    Article  Google Scholar 

  • Bordenave ML, Hegre JA (2005) The influence of tectonics on the entrapment of oil in the Dezful Embayment, Zagros Foldbelt, Iran. J Pet Geol 28:339–368

    Article  Google Scholar 

  • Bordenave ML, Hegre JA (2010) Current distribution of oil and gas fields in the Zagros Fold Belt of Iran and contiguous offshore as the result of the petroleum systems. Geol Soc London Spec Publ 330:291–353

    Article  Google Scholar 

  • Bowers GL, others (1995) Pore pressure estimation from velocity data: Accounting for overpressure mechanisms besides undercompaction. SPE Drill Complet 10:89–95

    Article  Google Scholar 

  • Bozorgi E, Javani D, Rastegarnia M (2016) Development of a mechanical earth model in an Iranian off-shore gas field. J Min Environ 7:37–46

    Google Scholar 

  • Braun P, Ghabezloo S, Delage P, Sulem J, Conil N (2018) Theoretical analysis of pore pressure diffusion in some basic rock mechanics experiments. Rock Mech Rock Eng 51:1361–1378

    Article  Google Scholar 

  • Brudy M, Zoback MD, Rummel F, Fuchs K (1995) Application of the integrated stress measurement strategy to 9 km depth in the KTB Boreholes

  • Burck J, Marten F, Bals C, Höhne N (2015) The Climate Change Performance Index results 2016. 17

  • Colucci F, Guandalini R, Macini P, Mesini E, Moia F, Savoca D (2016) A feasibility study for CO2 geological storage in Northern Italy. Int J Greenh Gas Control 55:1–14. https://doi.org/10.1016/j.ijggc.2016.10.013

    Article  Google Scholar 

  • Dai Z, Viswanathan H, Fessenden-Rahn J, Middleton R, Pan F, Jia W, Lee SY, McPherson B, Ampomah W, Grigg R (2014) Uncertainty quantification for CO2 sequestration and enhanced oil Recovery. Energy Procedia 63:7685–7693. https://doi.org/10.1016/j.egypro.2014.11.802

    Article  Google Scholar 

  • Dai Z, Viswanathan H, Middleton R, Ampomah W, Yang C, Jia W, Xiao T, Lee SY, McPherson B, Balch R (2016) CO2 accounting and risk analysis for CO2 sequestration at enhanced oil recovery sites. Environ Sci Technol 50:7546–7554

    Article  Google Scholar 

  • Dai Z, Zhang Y, Bielicki J, Amooie MA, Zhang M, Yang C, Zou Y, Ampomah W, Xiao T, Jia W, Middleton R (2018) Heterogeneity-assisted carbon dioxide storage in marine sediments. Appl Energy 225:876–883

    Article  Google Scholar 

  • Darvish H, Nouri-Taleghani M, Shokrollahi A, Tatar A (2015) Geo-mechanical modeling and selection of suitable layer for hydraulic fracturing operation in an oil reservoir (south west of Iran). J African Earth Sci 111:409–420

    Article  Google Scholar 

  • Diao Y, Zhang S, Wang Y, Li X, Cao H (2015) Short-term safety risk assessment of CO2 geological storage projects in deep saline aquifers using the Shenhua CCS Demonstration Project as a case study. Environ Earth Sci 73:7571–7586

    Article  Google Scholar 

  • Eaton BA (1975) The equation for geopressure prediction from well logs. Society of Petroleum Engineers of AIME. Paper SPE 5544

  • Fjar E, Holt RM, Raaen AM, Risnes R, Horsrud P (2008) Petroleum related rock mechanics. Elsevier

  • Gan Q, Elsworth D (2014) Analysis of fluid injection-induced fault reactivation and seismic slip in geothermal reservoirs. J Geophys Res Solid Earth 119:3340–3353

    Article  Google Scholar 

  • Ganguli SS, Vedanti N, Dimri VP (2016) 4D reservoir characterization using well log data for feasible CO2-enhanced oil recovery at Ankleshwar, Cambay Basin-A rock physics diagnostic and modeling approach. J Appl Geophys 135:111–121

    Article  Google Scholar 

  • Ghabezloo S, Sulem J (2009) Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mech Rock Eng 42:1

    Article  Google Scholar 

  • Ghabezloo S, Sulem J, Guédon S, Martineau F, Saint-Marc F (2008) Poromechanical behaviour of hardened cement paste under isotropic loading. Cem Concr Res 38:1424–1437

    Article  Google Scholar 

  • Haro HAV, de Paula Gomes MS, Rodrigues LG (2018) Numerical analysis of carbon dioxide injection into a high permeability layer for CO2-EOR projects. J Pet Sci Eng 171:164–174

    Article  Google Scholar 

  • Heidbach O, Rajabi M, Reiter K, Ziegler M (2016) World stress map 2016. Science 80-:277:1956–1962

    Google Scholar 

  • Herzog H, Drake E, Adams E (1997) CO2 Capture, Reuse, and Storage Technologies

  • Higgins SM, Goodwin SA, Bratton TR, Tracy GW (2008) Anisotropic stress models improve completion design in the Baxter Shale. In: SPE Annual Technical Conference and Exhibition

  • Hillis R (2000) Pore pressure/stress coupling and its implications for seismicity. Explor Geophys 31:448–454. https://doi.org/10.1071/EG00448

    Article  Google Scholar 

  • Hillis RR (2001) Coupled changes in pore pressure and stress in oil fields and sedimentary basins. Pet Geosci 7:419–425

    Article  Google Scholar 

  • Hou Z, Gou Y, Taron J, Gorke UJ, Kolditz O (2012) Thermo-hydro-mechanical modeling of carbon dioxide injection for enhanced gas-recovery (CO2-EGR): a benchmarking study for code comparison. Environ Earth Sci 67:549–561

    Article  Google Scholar 

  • Hung J, Wu J chang (2012) In-situ stress and fault reactivation associated with LNG injection in the Tiechanshan gas field, fold-thrust belt of Western Taiwan. J Pet Sci Eng 96–97:37–48. https://doi.org/10.1016/j.petrol.2012.08.002

    Article  Google Scholar 

  • Iran O. Country Analysis Briefs. US Energy Information Administration (EIA) (2015)

  • Jaeger JC, Cook NGW (1979) Fundamentals of rock mechanics, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • James GA, Wynd JG (1965) Stratigraphic nomenclature of Iranian oil consortium agreement area. Am Assoc Pet Geol Bull 49:2182–2245

    Google Scholar 

  • Jarahi H, Naraghiaraghi N, Nadalian M (2015) Persian gulf fault: new seismotectonic element on seabed. Can J Basic Appl Sci 03:85–92

    Google Scholar 

  • Karimnezhad M, Jalalifar H, Kamari M (2014) Investigation of caprock integrity for CO2 sequestration in an oil reservoir using a numerical method. J Nat Gas Sci Eng 21:1127–1137. https://doi.org/10.1016/j.jngse.2014.10.031

    Article  Google Scholar 

  • Keating E, Bacon D, Carroll S, Mansoor K, Sun Y, Zheng L, Harp D, Dai Z (2016) Applicability of aquifer impact models to support decisions at CO2 sequestration sites. Int J Greenh Gas Control 52:319–330. https://doi.org/10.1016/j.ijggc.2016.07.001

    Article  Google Scholar 

  • Kidambi T, Kumar GS (2016) Mechanical Earth Modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. J Pet Sci Eng 141:38–51. https://doi.org/10.1016/j.petrol.2016.01.003

    Article  Google Scholar 

  • Kingdon A, Fellgett MW, Williams JDO (2016) Use of borehole imaging to improve understanding of the in-situ stress orientation of Central and Northern England and its implications for unconventional hydrocarbon resources. Mar Pet Geol 73:1–20

    Article  Google Scholar 

  • Klein E, Baud P, Reuschle T, Wong TF (2001) Mechanical behavior and failure mode of Bentheim sandstone under triaxial compression. Phys Chem Earth (A) 26:21–25

    Article  Google Scholar 

  • Kühn M, Tesmer M, Pilz P, Meyer R, Reinicke K, Forster A, Kolditz O, Schafer D (2012) CLEAN: project overview on CO2 large-scale enhanced gas recovery in the Altmark natural gas field (Germany). Environ Earth Sci 67:311–321

    Article  Google Scholar 

  • Kumar S, Mandal A (2017) A comprehensive review on chemically enhanced water alternating gas/CO2 (CEWAG) injection for enhanced oil recovery. J Pet Sci Eng 157:696–715

    Article  Google Scholar 

  • Lacazette A (2009) Paleostress analysis from image logs using pinnate joints as slip indicators. AAPG Bulletin 93:1489–1501

    Article  Google Scholar 

  • Lackner KS (2003) A guide to CO2 sequestration. Science 300:1677–1678

    Article  Google Scholar 

  • Mavko G (2005) Conceptual overview of rock and fluid factors that impact seismic velocity and impedance. Stanford Rock Phys Lab 112

  • Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24:275–278

    Article  Google Scholar 

  • Movahed Z, Junin R, Jeffreys P (2014) Evaluate the borehole condition to reduce drilling risk and avoid potential well bore damages by using image logs. J Pet Sci Eng 122:318–330. https://doi.org/10.1016/j.petrol.2014.07.027

    Article  Google Scholar 

  • Movahed Z, Junin R, Bakhtiari HA, Safarkhanlou Z, Movahed AA, Alizadeh M (2015) Introduction of sealing fault in Asmari reservoir by using FMI and RFT in one of the Iranian naturally fractured oil fields. Arab J Geosci 8:10919–10936. https://doi.org/10.1007/s12517-015-1951-z

    Article  Google Scholar 

  • Nairn AEM, Alsharhan AS (1997) Sedimentary basins and petroleum geology of the Middle East. Elsevier

  • Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2017) Reservoir geomechanical modeling: In-situ stress, pore pressure, and mud design. J Pet Sci Eng 151:31–39. https://doi.org/10.1016/j.petrol.2017.01.045

    Article  Google Scholar 

  • Niu Z, Li Q, Wei X, Li X, Ma J (2017) Numerical investigation of slippage characteristics of normal and reverse faults under fluid injection and production. Environ Earth Sci 76:502

    Article  Google Scholar 

  • Nordbotten JM, Celia MA (2011) Geological storage of CO2: modeling approaches for large-scale simulation. Wiley, New York

    Book  Google Scholar 

  • Ostadhassan M, Zeng Z, Zamiran S (2012) Geomechanical Modeling of an Anisotropic Formation-Bakken Case Study. 46th Meet Am Rock Mech Assoc

  • Pan F, McPherson BJ, Dai Z, Jia W, Lee SY, Ampomah W, Viswanathan H, Esser R (2016) Uncertainty analysis of carbon sequestration in an active CO2-EOR field. Int J Greenh Gas Control 51:18–28

    Article  Google Scholar 

  • Perera M, Gamage R, Rathnaweera T, Ranathunga A, Koay A, Choi X (2016) A review of CO2-enhanced oil recovery with a simulated sensitivity analysis. Energies 9:481. https://doi.org/10.3390/en9070481

    Article  Google Scholar 

  • Plasynski S, Litynski J, Rodosta T (2010) Site screening, site selection, and initial characterization for storage of CO2 in deep geologic formations. Netl. https://doi.org/10.1016/j.egypro.2011.02.427

  • Plumb R, Edwards S, Pidcock G, Lee D, Stacey B (2000) The mechanical earth model concept and its application to high-risk well construction projects. In: IADC/SPE Drilling Conference

  • Preston BL, Jones RN (2006) Climate change impacts on Australia and the benefits of early action to reduce global greenhouse gas emissions. CSIRO Canberra

  • Ren B, Duncan IJ (2019) Reservoir simulation of carbon storage associated with CO2 EOR in residual oil zones, San Andres formation of West Texas, Permian Basin, USA. Energy 167:391–401. https://doi.org/10.1016/j.energy.2018.11.007

    Article  Google Scholar 

  • Ringrose PS, Mathieson AS, Wright IW, Selama F, Hansen O, Bissell R, Saoula N, Midgley J (2013) The In Salah CO2 storage project: lessons learned and knowledge transfer. Energy Procedia 37:6226–6236

    Article  Google Scholar 

  • Rutqvist J, Birkholzer J, Cappa F, Tsang CF (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manag 48:1798–1807. https://doi.org/10.1016/j.enconman.2007.01.021

    Article  Google Scholar 

  • Rutqvist J, Cappa F, Rinaldi AP, Godano M (2014) Modeling of induced seismicity and ground vibrations associated with geologic CO2 storage, and assessing their effects on surface structures and human perception. Int J Greenh Gas Control 24:64–77

    Article  Google Scholar 

  • Safi R, Agarwal RK, Banerjee S (2016) Numerical simulation and optimization of CO2 utilization for enhanced oil recovery from depleted reservoirs. Chem Eng Sci 144:30–38

    Article  Google Scholar 

  • Salati S, van Ruitenbeek FJ, Carranza EJ, van der Meer FD, Tangestani MH (2013) Conceptual modeling of onshore hydrocarbon seep occurrence in the Dezful Embayment, SW Iran. Mar Pet Geol 43:102–120

    Article  Google Scholar 

  • Salemi H, Rezagholilou A, Asadi S, Iglauer S, Sarmadivaleh M (2017) Poroelastic effects of pore pressure-stress coupling on fault reactivation risks during gas injection. In: 51st US Rock Mechanics/Geomechanics Symposium

  • Santarelli FJ, Brown ET (1989) Failure of three sedimentary rocks in triaxial and hollow cylinder compression tests. Int J Rock Mech Min Sci Geomech Abstr 26:401–413

    Article  Google Scholar 

  • Schön JH (2015) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier

  • Sepehr M, Cosgrove JW (2005) Role of the Kazerun Fault Zone in the formation and deformation of the Zagros Fold-Thrust Belt, Iran. Tectonics 24:1–13. https://doi.org/10.1029/2004TC001725

    Article  Google Scholar 

  • Setudehnia A (1972) Iran du sud-ouest. Lexique Stratigraphique International III, Fascicule 9b. Center National de la, Iran

  • Seyyedsar SM, Farzaneh SA, Sohrabi M (2016) Experimental investigation of tertiary CO2 injection for enhanced heavy oil recovery. J Nat Gas Sci Eng 34:1205–1214

    Article  Google Scholar 

  • Shukla R, Ranjith PG, Choi SK, Haque A (2011) Study of caprock integrity in geosequestration of carbon dioxide. Int J Geomech 11:294–301. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000015

    Article  Google Scholar 

  • Streit JE, Hillis RR (2004) Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy 29:1445–1456

    Article  Google Scholar 

  • StressTensor_v3.0 Pore Pressure.xls. http://www.ged.rwth-aachen.de/index.php?cat=Research&subcat=Fault_seals_and_top_seals&page=Stress_and_Paleostress

  • Tambach TJ, Koenen M, Wasch LJ, van Bergen F (2015) Geochemical evaluation of CO2 injection and containment in a depleted gas field. Int J Greenh Gas Control 32:61–80. https://doi.org/10.1016/j.ijggc.2014.10.005

    Article  Google Scholar 

  • Thiercelin MJ, Plumb RA (1994) A core-based prediction of lithologic stress contrasts in east Texas formations. SPE Form Eval 9:251–258

    Article  Google Scholar 

  • Thomas S (2008) Enhanced oil recovery-an overview. Oil Gas Sci Technol l’IFP 63:9–19

    Article  Google Scholar 

  • Tingay M, Reinecker J, Müller B (2008) Borehole breakout and drilling-induced fracture analysis from image logs. World Stress Map Project, 1–8

  • U.S. Energy Information Administration (2015) Iran EIA. 2015:16

  • Vilarrasa V, Carrera J, Olivella S (2013) Hydromechanical characterization of CO2 injection sites. Int J Greenh Gas Control 19:665–677. https://doi.org/10.1016/j.ijggc.2012.11.014

    Article  Google Scholar 

  • Vilarrasa V, Makhnenko R, Gheibi S (2016) Geomechanical analysis of the influence of CO2 injection location on fault stability. J Rock Mech Geotech Eng 8:805–818. https://doi.org/10.1016/j.jrmge.2016.06.006

    Article  Google Scholar 

  • Wang Z (2000) Dynamic versus static elastic properties of Reservoir rocks. Seismic and acoustic velocities in reservoir rocks. Soc Explor Geophys Tulsa 19:531–539

    Google Scholar 

  • Worum G, van Wees JD, Bada G, van Balen RT, Cloetingh S, Pagnier H (2004) Slip tendency analysis as a tool to constrain fault reactivation: A numerical approach applied to three-dimensional fault models in the Roer Valley rift system (southeast Netherlands). J Geophys Res Solid Earth 109

  • Zang A, Stefansson O (2010) Stress Field of the Earth’ s Crust

  • Zhang J (2011) Pore pressure prediction from well logs: methods, modifications, and new approaches. Earth-Science Rev 108:50–63. https://doi.org/10.1016/j.earscirev.2011.06.001

    Article  Google Scholar 

  • Zoback MD (2007) Reservoir geomechanics, critically stressed faults and fluid flow. Cambridge University Press, New York, pp 340–377

    Google Scholar 

  • Zoback MD, Barton CA, Brudy M et al (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40:1049–1076

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Ferdowsi University of Mashhad under Grant No. 3/37602 (12/03/1394) and Iran National Science Foundation under Grant No. 94810699. The authors wish to thank National Iranian South Oil Company (NISOC) for providing field data and permission to use it in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholam Reza Lashkaripour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amiri, M., Lashkaripour, G.R., Ghabezloo, S. et al. Mechanical earth modeling and fault reactivation analysis for CO2-enhanced oil recovery in Gachsaran oil field, south-west of Iran. Environ Earth Sci 78, 112 (2019). https://doi.org/10.1007/s12665-019-8062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-019-8062-1

Keywords

Navigation