Skip to main content
Log in

Microstructure and properties of high strength aluminium alloys for structural applications

  • Overview
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This article discusses the fundamental basis of high strength Al alloy design and describes the role of alloying elements, mechanical processing parameters and heat treatments toward the evolution of microstructure that controls the desired properties i.e. strength, fracture toughness, stress corrosion cracking (SCC) resistance, fatigue crack initiation and propagation resistance, and weldability in 7xxx series Al alloys. The beneficial effects of suitable micro/trace alloying elements, and deleterious effects of certain impurity elements on a variety of properties are further discussed within the present context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hornbogen E, Mukhopadhyay A K and Starke E A, Jr. An Exploratory Study in Al-(Si,Ge) Alloys, Z. Metallkde, 8 (1992) 83.

    Google Scholar 

  2. Mukhopadhyay A K, “High Strength Al Alloys for Structural Applications”, Metals, Materials and Processes, 19 (2007) 1.

    CAS  Google Scholar 

  3. Kelly PM, The effect of particle shape on dispersion hardening, Scripta Metall., 6 (1972) 647.

    Article  CAS  Google Scholar 

  4. Nie J F, Muddle B C and Polmear I J, The effect of precipitate shape and orientation on dispersion strengthening in high strength Al alloys, Mater. Sci. Forum, 217–222 (1996) 1257.

    Article  Google Scholar 

  5. Ryum N, Proc. ICAA 1, Strake E A, Jr and Sanders T H, Jr., Physical Metallurgy of Heat Treatable Alloys, editors. EMAS:Warley, UK; 1 (1986) 1511.

    Google Scholar 

  6. Mukhopadhyay A K, Influence of Cu Additions on the Morphology of GeSi Precipitates in an Al-Ge-Si Alloy, Metall. Mater. Trans. A, 32 (2001) 1949.

    Article  Google Scholar 

  7. Milman Y V, Lotsko D V and Sirko O I, Sc effect of improving mechanical properties in Al alloys, Mater. Sci. Forum, 331–337 (2000) 1107.

    Article  Google Scholar 

  8. Prasad K S, Mukhopadhyay A K and Joshi V A, On the Scbearing Phases Present in As-Cast and Homogenized 7010 Alloy Containing Sc Z. Metallkde. 95 (2004) 1046.

    CAS  Google Scholar 

  9. Mukhopadhyay A K and Reddy G M, Influence of Trace Additions of Silver on the Weldability of Al-Zn-Mg-Cu-Zr Base 7010 Alloy, Proc. ICAA 8, Gregson PJ and Harris SJ, editors. Cambridge, UK: Mater. Sci. Forum; 396–402 (2002) 1665.

    Google Scholar 

  10. Mukhopadhyay A K, Prasad K S, Kumar Vikas, Reddy G M, Kamat S V and Varma V K, Key Microstructural Features Responsible for Improved Stress Corrosion Cracking Resistance and Weldability in 7xxx Series Al Alloys containing Micro/Trace Alloying Additions, Mater. Sci. Forum, 519–521 (2006) 315.

    Article  Google Scholar 

  11. Mukhopadhyay AK, Guinier Preston Zones in a High Purity Al-Zn-Mg Alloy, Phil. Mag. Lett., 70 (1994) 135.

    Article  ADS  CAS  Google Scholar 

  12. Mukhopadhyay A K, Yang Q B and Singh S R, The Influence of Zr on the Early Stages of Aging of a Ternary Al-Zn-Mg Alloy, Acta Metall. Mater., 42 (1994) 3083.

    Article  CAS  Google Scholar 

  13. Holl H A, The influence of subgrain structure on precipitation-hardening and nucleation of precipitates in an Al-Zn-Mg alloy, J. Metal Sci., 1 (1967) 111.

    CAS  Google Scholar 

  14. Mukhopadhyay A K, Shiflet G J and Starke E A, Jr. Role of Vacancies on the Precipitation Processes in Zr-Modified Aluminum Based Alloys, Scripta Metall. Mater., 24 (1990) 307.

    Article  CAS  Google Scholar 

  15. Park JK and Ardell AJ, Effect of retrogression and reaging treatments on the microstructure of Al-7075-T651, Metall. Trans. A, 14 (1983) 1957.

    Article  Google Scholar 

  16. Maloney SK, Hono K, Polmear IJ and Ringer SP, The chemistry of precipitates in an aged Al-2.1Zn-1.7Mg at.% alloy, Scripta Mater., 41 (1999) 1031.

    Article  CAS  Google Scholar 

  17. Kovacs Zs, Chinh NQ, Suvegh K, Marek T, Horvath Gy, Lendvai J, Ping DH and Hono K, The effect of Cu on precipitation in Al-Zn-Mg alloys, ICAA 9, Nie JF et al. editors, Brisbane, (2004) 1192.

  18. Sha G and Cerazo A, Early-stage precipitation in Al-Zn-Mg-Cu alloy (7050), Acta Mater., 52 (2004) 4503.

    Article  CAS  Google Scholar 

  19. Gruhl W, Stress corrosion cracking of high strength Al alloys, Z. Metallkde, 75 (1984) 819.

    CAS  Google Scholar 

  20. Mukhopadhyay AK, Patent pending, (2007).

  21. Sarkar B, Marek M and Starke E A, Jr., The effect of Cu content and heat treatment on the stress corrosion characteristics of Al-6Zn-2Mg-X Cu alloys, Metall. Mater. Trans. A, 12 (1981) 1939.

    Article  ADS  CAS  Google Scholar 

  22. Strawbridge DJ, Hume-Rothery W and Little AT, Quaternary Al-Cu-Mg-Zn phase diagram, J. Inst. Met., 74 (1948) 191.

    Google Scholar 

  23. Mondal C and Mukhopadhyay AK, Nature of T(Al2Mg3Zn3) and S(Al2CuMg) Phases Present in As-Cast and Annealed 7055 Alloys, Mater. Sci. Engg. A, 391 (2005) 367.

    Article  Google Scholar 

  24. Mukhopadhyay A K, An Industrial perspective — Part II: Microstructure, Properties and Applications of Al-Zn-Mg-Cu base 7xxx series Aluminium Alloys, Minerals and Metals Review, 9 (2005) 61.

    Google Scholar 

  25. Mondal C, Mukhopadhyay AK, Rahgu T and Prasad KS, Extrusion Processing of High Strength Al Alloy 7055, Materials and Manufacturing Process, Materials and Manufacturing Process, 22 (2007) 424.

    Article  CAS  Google Scholar 

  26. Mukhopadhyay AK, Development of Reproducible and Increased Strength Properties in Low-Alloy AA 7075 Extrusion Products, Metall. Mater. Trans. A, 28 (1997) 2429.

    Article  Google Scholar 

  27. Cina BM, US Patent 3, 856 (1974) 584.

  28. Mukhopadhyay AK, Patent pending, (2007).

  29. Mukhopadhyay AK, Prasad KS and Dutta A, Influence of Scandium Addition on the High Temperature Compressive Strength of Al Alloy 7010, Mater. Sci. Forum, 519–521 (2006) 871.

    Article  Google Scholar 

  30. Desmukh MN, Pandey RK and Mukhopadhyay AK, Effect of Silver Addition on the Fatigue Crack Growth Behaviour of 7010 Al Alloy, Proc. 2nd Int. Conf. on Structure, Processing and Properties of Materials, SPPM 2004, 25–27 February, 2004, Dhaka, Bangladesh, (2004) 357.

  31. Desmukh MN, Pandey RK and Mukhopadhyay AK, Fatigue Behaviour of 7010 Aluminum Alloy Containing Scandium, Scripta Mater., 52 (2005) 645.

    Article  CAS  Google Scholar 

  32. Kumar A. and Mukhopadhyay AK and Prasad KS, Superplastic Behaviour of a High Strength Al-Zn-Mg-Cu-Zr Alloy, Metall. Mater, Trans. A, 40 (2009) 278.

    Article  Google Scholar 

  33. Mukhopadhyay A K, Kumar A and Prasad K S, Superplastic Behaviour of High Strength Al-Zn-Mg-Cu Alloys Containing Zr and Sc, ICAA 11, Germany, eds. J. Hirsch, B. Skrotski and G. Gottstein, DGM, Wiley-VCH GmbH & Co. KGaA, September 22–26, 1 (2008) 1782.

  34. Raju K S S, Mukhopadhyay A K and Kamat S V, The effect of Mixed Mode I/III Loading on the Fracture Toughness of 7010 Alloy, Mater. Sci. Technol., 22 (2006) 91.

    Article  CAS  Google Scholar 

  35. Mukhopadhyay A K and Sharma A K, Influence of Fe-bearing Particles and Nature of Electrolyte on the Hard Anodizing Behaviour of 7075 Extrusion Products, Surface and Coatings Technol., 92 (1997) 212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Mukhopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mukhopadhyay, A.K. Microstructure and properties of high strength aluminium alloys for structural applications. Trans Indian Inst Met 62, 113–122 (2009). https://doi.org/10.1007/s12666-009-0015-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-009-0015-z

Keywords

Navigation