Skip to main content
Log in

Creep Behaviour of SAC387 Lead Free Solder Alloy Reinforced with Single Walled Carbon Nanotubes

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The effect of addition of single walled carbon nanotubes (SWCNTs) on creep behaviour of Sn–3.8Ag–0.7Cu (SAC387) lead free solder alloy was investigated. The creep tests were carried out using indentation technique by means of a nanoindenter. Modified Garofalo’s creep model showed an excellent fit to the indentation depth versus time data and was used to extract the creep parameters. The results showed that the steady state creep rate as well as primary creep stage displacement and primary creep stage time decreased with increasing addition of SWCNT to the base alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Allenby B R, Ciccarelli J P, in Proceeding of Surface Mount International Conference (1992) p 1.

  2. Ma H, and Suhling J C, J Mater Sci 44 (2009) 1141.

    Article  Google Scholar 

  3. Hwang J S, Implementing Lead-free Electronics, McGraw-Hill, New York, (2004) p 15.

  4. Abtew M, and Selvaduray G, Mater Sci Eng R 27 (2000) 95.

    Article  Google Scholar 

  5. Lee N C, Solder Surf Mt Technol 26 (1997) 65.

    Article  Google Scholar 

  6. Soldertec, European Lead-free Roadmap, ver 1, (2002) p 1.

  7. Cadek J, Creep in Metallic Materials, Elsevier, Amsterdam, (1998).

    Google Scholar 

  8. Guo F, Choi S, Subramanian K N, Bieler T R, Lucas J P, Achari A, and Paruchuri M, Mat Sci Eng A 351 (2003) 190.

    Article  Google Scholar 

  9. Choi S, Lee J G, Guo F, Bieler T R, Subramanian K N, and Lucas J P, J Miner Met Mater Soc 53 (2001) 22.

    Article  Google Scholar 

  10. Marshall J L, and Calderon J, Solder Surf Mt Technol 9 (1997) 11.

    Article  Google Scholar 

  11. Mohan Kumar K, PhD thesis, National University of Singapore, Singapore (2009).

  12. Niranjani V L, Chandra Rao B S S, Rajdeep Sarkar, and Kamat S V, J Alloys Comp 542 (2012) 136.

  13. Salvetat Delmotte J, and Rubio A, Carbon 40 (2002) 1729.

  14. Saether E, Frankland S J, and Pipes R B, Compos Sci Technol 63 (2003) 1543.

    Article  Google Scholar 

  15. Mauron P H, Emmenegger C H, Züttel A, Nützenadel C H, Sudan P, and Schlapbach L, Carbon 40 (2002) 1339.

    Article  Google Scholar 

  16. Valentini L, Biagiotti J, Kenny J M, and Santucci S, Compos Sci Technol 63 (2003) 1149.

    Article  Google Scholar 

  17. Dong S, and Zhang X, Trans Non-Ferrous Met Soc China 9 (1999) 457.

    Google Scholar 

  18. Zhong R, Cong H, and Hou P, Carbon 41 (2003) 848.

    Article  Google Scholar 

  19. Nai S M L, Wei J, and Gupta M, Mater Sci Eng A 423 (2006) 166.

    Article  Google Scholar 

  20. Nai S M L, Wei J, and Gupta M, Thin Solid Films 504 (2006) 401.

    Article  Google Scholar 

  21. Nai S M L, Gupta M, and Wei J, Int J Nanosci 4 (2005) 423.

    Article  Google Scholar 

  22. Mohan Kumar K, Kripesh V, and Taya A O, J Alloys Compd 450 (2008) 229.

  23. Niranjani V L, Chandra Rao B S S, Vajinder Singh, and Kamat S V, Mater Sci Eng A 529 (2011) 257.

  24. Villain J, Brueller O S, and Qasim T, Sens Actuators A Phys, 99 (2002) 194.

    Article  Google Scholar 

  25. Li J C M, Mater Sci Eng A 322 (2002) 23.

    Article  Google Scholar 

  26. Klinger L, and Rabkin E, Scr Mater 48 (2003) 1475.

    Article  Google Scholar 

  27. Li W B, and Warren R, Acta Metall Mater 41 (1993) 3065.

    Article  Google Scholar 

  28. Gomez J, and Basaran C, Inter J Solid Struct 43 (2006) 1505.

    Article  Google Scholar 

  29. LaFontaine W R, Yost B, Black R D, and Li C Y, J Mater Res 5 (1990) 2100.

    Article  Google Scholar 

  30. Mayo M J, and Nix W D, Acta Metall 36 (1988) 2183.

    Article  Google Scholar 

  31. Lucas B N, and Oliver W C, Metall Mater Trans 30A (1999) 601.

    Article  Google Scholar 

  32. Mayo M J, Siegel R W, Narayansamy A, and Nix W D, J Mater Res 5 (1990) 1073.

    Article  Google Scholar 

  33. Mohan Kumar K, Kripesh V, and Taya A O, J Alloys Compd 450 (2008) 229.

  34. Nardone V C, and Prewo K M, Scr Metall 20 (1986) 43.

    Article  Google Scholar 

  35. Arfin N, and Ngan A H W, Scr Mater 54 (2006) 7.

    Article  Google Scholar 

  36. Yang S, Zhang Y W, and Zeng K Y, J Appl Phys 95 (2004) 3655.

    Article  Google Scholar 

  37. Zeng K Y, in Polymer Tribology, (eds) Sinha S K, and Briscoe B J, Imperial College Press, London (2009), p 141.

  38. Zhang C Y, Zhang Y W, and Zeng K Y, J Mater Res 19 (2004) 3053.

    Article  Google Scholar 

  39. Zhang C Y, Zhang Y W, Zeng K Y, and Shen L, J Mater Res 20 (2005) 1597.

    Article  Google Scholar 

  40. Zhang C Y, Zhang Y W, Zeng K Y, Shen L, and Wang Y Y, J Mater Res 21 (2006) 2991.

    Article  Google Scholar 

  41. Zhang C Y, Zhang Y W, Zeng K Y, and Shen L, Philo Mag 86 (2006) 4487.

    Article  Google Scholar 

  42. Evans H E, Mechanisms of Creep Fracture, Elsevier Science Publishing Company, London (1984).

    Google Scholar 

  43. Bower A F, Fleck N A, Needleman A, and Ogbonna N, Proc R Soc Lond A 441 (1993) 97.

    Article  Google Scholar 

  44. Cheng Y T, and Cheng C M, Mater Sci Eng R 44 (2004) 91.

    Article  Google Scholar 

  45. Kamat S V, Rollet A D, and Hirth J P, ScrMetall Mater 25 (1991) 27.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. A. Gokhale, Director, DMRL for his permission to publish this paper. The authors are also grateful to Defence Research and Development Organization for providing the funding and facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L. Niranjani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niranjani, V.L., Singh, V., Chandra Rao, B.S.S. et al. Creep Behaviour of SAC387 Lead Free Solder Alloy Reinforced with Single Walled Carbon Nanotubes. Trans Indian Inst Met 68, 311–317 (2015). https://doi.org/10.1007/s12666-014-0458-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0458-8

Keywords

Navigation