Skip to main content
Log in

Effect of Immersion Routes on the Quenching Distortion of a Long Steel Component Using a Finite Element Model

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Distortion while quenching steel is a commonly found problem in industrial practice. This issue arises from the combined effect of thermal contraction and martensite transformation stresses. This problem may be exacerbated in components with long geometries. This work presents the results of a numerical and experimental investigation that assessed the effect of both the austenite grain size (AGS) of three sizes 8, 9 and 10 ASTM, and the immersion route on the distortion of a long component of SAE 5160 steel during oil quenching. The transformation kinetics were calculated using JMatPro and were validated by quench dilatometry. A three-dimensional finite element model was developed in Deform 3D. This model was then validated using thermocouple data. Results showed that the distortion was minimized when the long component was dipped sideways in the quenching medium instead of immersing the component from the distal ends when the AGS was 8 ASTM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jung M, Kang M, and Lee Y K, Acta Mater 60 (2012) 525.

    Article  Google Scholar 

  2. Lee S J, and Lee Y K, Acta Mater 56 (2008) 1482.

    Article  Google Scholar 

  3. Şimşir C, and Gür C H, J Mater Process Technol 207 (2008) 211.

    Article  Google Scholar 

  4. Da Silva A D, Pedrosa T A, Gonzalez-Mendez J L, Jiang X, Cetlin P R, and Altan T, Mater Des 42 (2012) 55.

    Article  Google Scholar 

  5. Huang D, Arimoto K, Lee K, and Lambert D, Prediction of Quench Distortion on Steel Shaft with Keyway by Computer Simulation, Heat Treating Conference Exposition, (2000) 1.

  6. Woodard P R, Chandrasekar S, and Yang H T Y, Metall Mater Trans B 30 (1999) 815.

    Article  Google Scholar 

  7. Guo Z, Saunders N, Miodownik P, and Schillé J P, Int J Microstruct Mater Prop 4 (2009) 187.

    Google Scholar 

  8. Ouchi C, ISIJ Int 41 (2001) 542.

    Article  Google Scholar 

  9. Babu K, Adv Mat Res 488489 (2012) 353.

    Article  Google Scholar 

  10. Yaakoubi M, Kchaou M, and Dammak K, Comput Mater Sci 68 (2013) 297.

    Article  Google Scholar 

  11. Barford J, and Owen W S, Met Sci Heat Treat 4 (1962) 359.

    Article  Google Scholar 

  12. Matsuzaki A, and Bhadeshia H K D H, Mater Sci Technol 15 (1999) 518.

    Article  Google Scholar 

  13. Van Bohemen S M C, Metall Mater Trans A 41 (2010) 285.

    Article  Google Scholar 

  14. Denis S, Sjöström S, and Simon A, Metall Trans A 18 (1987) 1203.

    Article  Google Scholar 

  15. Huang J, Ye X, Gu J, Chen X, and Xu Z, Mater Sci Eng A 532 (2012) 190.

    Article  Google Scholar 

  16. Denis S, Gautier E, Simon A, and Beck G, Mater Sci Technol 1 (1985) 805.

    Article  Google Scholar 

  17. Inoue T, Ju D Y, and Arimoto K, in Proceedings of International Conference on Quenching and Control of Distortion, ASM, Ohio, 1 (1992), p 205.

  18. Metals Handbook Materials Selection and Design, ASM International, Ohio 20 (1997) 774.

  19. Sugianto A, Narazaki M, Kogawara M, and Shirayori A, J Mater Process Technol 209 (2009) 4627.

    Article  Google Scholar 

  20. Guo Z, Saunders N, and Schillé J P, Modelling phase transformation and materials properties critical to simulation of heat treatment distortion in steels, Sente Software Ltd, London (2008).

    Google Scholar 

  21. Amey C M, Huang H, and Rivera-Diaz-del-Castillo P E J, Mater Des 35 (2012) 66.

    Article  Google Scholar 

  22. Nallathambi A K, Kayamak Y, Specht E, and Bertram A, J Mater Process Technol 210 (2010) 204.

    Article  Google Scholar 

  23. Garcia-Pastor F A, Lopez-Garcia R D, Alfaro-Lopez E, and Castro-Roman M J, in Proc of XXI International Materials Research Congress, ASM, Mexico, 1485 (2012), p 29.

  24. Garcia-Pastor F A, Lopez-Garcia R D, and Castro-Roman M J, in Proc of 5th International Conference on Thermal Process Modelling, ASM, Ohio, (2014), p 14.

  25. Hasan H S, and Peet M J, Int Commun Heat Mass Transfer 39 (2012) 1519.

    Article  Google Scholar 

  26. Cheng H, Xie J, and Li J, Comput Mater Sci 29 (2004) 453.

    Article  Google Scholar 

  27. Cheng M, Cheng J, Yuan S Q, and Zhao F, Acta Metall Sin 10 (1997) 479.

    Google Scholar 

  28. Huiping L, Guoqun Z, Lianfang H, and Yue M, Measurement 41 (2008) 676.

    Article  Google Scholar 

  29. Sedighi M, and McMahon C A, J Eng Manuf 241 (2000) 555.

    Article  Google Scholar 

  30. Heming C, Xieqing H, and Jianbin X, J Mater Process Technol 138 (2003) 399.

    Article  Google Scholar 

  31. Gür C H, and Tekkaya A E, Mater Sci Eng A 319 (2001) 164.

    Article  Google Scholar 

  32. Polyakov A A, Met Sci Heat Treat 37 (1995) 324.

    Article  Google Scholar 

  33. Mackerle J, Comput Mater Sci 27 (2003) 313.

    Article  Google Scholar 

  34. Gür C H, and Pan J, Handbook of Thermal Process Modeling of Steel, CRC Press, New York (2009).

    Google Scholar 

  35. Şimşir C, and Gür C H, Comput Mater Sci 44 (2008) 588.

    Article  Google Scholar 

  36. Kang S H, and Im Y T, Int J Mech Sci 49 (2007) 423.

    Article  Google Scholar 

  37. Li Z, Grandhi F V, and Srinivasan R, J Mater Process Tech 172 (2006) 249.

    Article  Google Scholar 

  38. Liu C, Ju D Y, and Inoue T, ISIJ Int 42 (2002) 1125.

    Article  Google Scholar 

  39. Beck J V, User´s Manual for CONTA Program for Calculating Surface Heat Fluxes from Transient Temperatures Inside Solids, Report SAND83-7134, Michigan State University, USA (1983) 1.

  40. Johnson A W, and Mehl R F, Trans AIME 135 (1939) 416.

    Google Scholar 

  41. Avrami M, and Chem J, Phys 7 (1939) 1103.

    Google Scholar 

  42. Koistinen D P, and Marburger R F, Acta Metall 7 (1939) 59.

    Article  Google Scholar 

  43. Scientific Forming Technologies Corporation, Columbus Ohio, DEFORM User´s Manual, Version 6.1 (2007).

  44. Surrey Technology Center United Kingdom, Sente Software Ltd, JMatPro, Version.

Download references

Acknowledgments

The authors acknowledge the Mexican Science and Technology Council (Conacyt) for supporting Mr. López-García during his Ph.D. studies at Cinvestav Saltillo. The authors especially thank San Luis Rassini’s personnel, who kindly provided their facilities to perform the heat transfer coefficient measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. D. Lopez-Garcia or F. A. Garcia-Pastor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Garcia, R.D., Garcia-Pastor, F.A., Castro-Roman, M.J. et al. Effect of Immersion Routes on the Quenching Distortion of a Long Steel Component Using a Finite Element Model. Trans Indian Inst Met 69, 1645–1656 (2016). https://doi.org/10.1007/s12666-015-0738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-015-0738-y

Keywords

Navigation