Skip to main content
Log in

Metaheuristic Based Parametric Optimization of TIG Welded Joint

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Martensitic stainless steels are hard, brittle and notch sensitive; crack formation during welding is frequent. Selection of the levels of welding parameters i.e. the input variables seems to be important and useful in the context of achieving optimum/maximum strength of the welded joint. In the present work, focus is given on identification of the proper combination of input parameters in TIG welding of martensitic stainless steel AISI 420. Welding current, gas flow rate and welding speed have been taken as input parameters. Ultimate tensile strength (UTS) and Ductility or Elongation of the welded joint obtained from tensile test is taken as response parameter. Initially, response surface methodology based face-centered central composite design has been used for mathematical model building and regression analysis. Next, several recently proposed metaheuristics are applied for parametric optimization of TIG welding process to maximize the response parameters. From, the simulated results, a critical operating region for efficient TIG welding is identified in term of maximum UTS and Ductility. Confirmatory tests are also performed to validate our proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Isfahany A N, Saghafian H, and Borhani G, J Alloys Comp 509 (2011) 3931.

    Article  Google Scholar 

  2. Davis J R, Corrosion of Weldments, ASM International, Materials Park, USA (2006).

    Google Scholar 

  3. Kose C, and Kacar R, Mater Des 64 (2014) 221.

    Article  Google Scholar 

  4. Lippord J C, and Kotecki D J, Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken (2005) p 56.

    Google Scholar 

  5. Castro R, and Cadenet J J, Welding Metallurgy of Stainless and Heat Resisting Steels, Cambridge University Press, London (2005) p 45.

    Google Scholar 

  6. Choi Y S, Kim J G, Park Y, and Park J Y, Mater Lett 61 (2007) 244.

    Article  Google Scholar 

  7. Carrouge D, Bhadeshia H K D H, and Woollin P, Sci Technol Weld Join 9 (2004) 377.

    Article  Google Scholar 

  8. Anselmo N, May J E, Mariano N A, Nascente P A P, Kuri S E, Mater Sci Eng A 428 (2006) 73.

    Article  Google Scholar 

  9. Della Rovere C A, Aquino J M, Ribeiro C R, Silva R, Alcantara N G, Kuri S E, Mater Des 65 (2015) 318.

    Article  Google Scholar 

  10. Baghjari S H, and Mousavi S A A A, Mater Des 43 (2013) 1.

    Article  Google Scholar 

  11. Andrews K W, J Iron Steel Inst 203 (1965) 721.

    Google Scholar 

  12. Kurt B, Orhan N, Somunkiran I, and Kaya M, Mater Des 30 (2009) 661.

    Article  Google Scholar 

  13. Yılmaz R, and Türkyılmazoglu A, Adv Mater Res 23 (2007) 319.

    Article  Google Scholar 

  14. Kiaee N, and Aghaie-Khafri M, Mater Des 54 (2014) 25.

    Google Scholar 

  15. Gunaraj V, and Murugan N, J Mater Process Technol 88 (1999) 266.

    Article  Google Scholar 

  16. Elatharasana G, Senthil Kumar V S, Procedia Eng 64 (2013) 1227.

    Article  Google Scholar 

  17. Benyounis K Y, Olabi A G, and Hashmi M S J, J Mater Process Technol 164165 (2005) 986.

    Article  Google Scholar 

  18. Raja D J E, and Dhas S J H, Procedia Eng 38 (2012) 544.

    Article  Google Scholar 

  19. Pasupathy J, and Ravisankar V, Int J Sci Eng Res 4 (2013) 25.

    Google Scholar 

  20. Eşme U, Arab J Sci Eng 34 (2009) 519.

    Google Scholar 

  21. Nagesha D S, and Datta G L, Appl Soft Comput 10 (2010) 897.

    Article  Google Scholar 

  22. Sette S, Boullart L, and Langenhove L, Eng Appl Artif Intell 9 (1996) 681.

  23. Yang L J, Bibby M J, and Chandel R S, J Mater Process Technol 39 (1993) 33.

    Article  Google Scholar 

  24. Lee J I, and Rhee S, Proc Inst Mech Eng Part B J Eng Manuf 214 (2000) 443.

    Article  Google Scholar 

  25. Jamil M, and Yang X S, Int J Math Model Numer Optim 4 (2013) 150, https://doi.org/10.1504/ijmmno.2013.055204.

    Article  Google Scholar 

  26. Nagesha D S, and Datta G L, Appl Soft Comput 10 (2010) 897.

    Article  Google Scholar 

  27. Canyurt O E, Int J Mech Sci 47 (2005) 1249.

    Article  Google Scholar 

  28. Kim D, and Rhee S, Weld J (2001) 184.

  29. Satheesh M, and Dhas J E R, IJST Trans Mech Eng 37 (2013) 175.

    Google Scholar 

  30. Yang X S, Proc Nat Inspir Coop Strateg Optim (NISCO 2010) 284 (2010) 65.

  31. Mandal S, Khan A, Saha G and Pal R K, J Bioinf Comput Biol 14 (2016) 1, https://doi.org/10.1142/s0219720016500104.

    Article  Google Scholar 

  32. Yang X S, Deb S, Int J Math Model Numer Optim 1 (2010) 330.

    Article  Google Scholar 

  33. Mandal S, Khan A, Saha G, and Pal R K, Adv Bioinf (2016) 1, http://dx.doi.org/10.1155/2016/5283937.

  34. Yang X S, Proc Unconv Comput Nat Comput Lect Notes Comput Sci 7445 (2012) 240.

    Article  Google Scholar 

  35. Yang X S, Karamanoglu M, and He X S, Eng Optim 46 (2014) 1222.

    Article  Google Scholar 

  36. Eberhart R C, and Shi Y H, in Proc IEEE Congress on Evolutionary Computation (2000) p 84.

  37. Shi Y H, Eberhart R C, Proc SCI2000 Conf 3 (2000) 1945.

  38. Mandal S, Sadhana 42 (2017) (accepted for publication).

  39. Mandal S, Saha G, and Pal R K, J Bioinf Comput Biol 15 (2017) 1750016, https://doi.org/10.1142/s0219720017500160.

  40. Man K F, Tang K S, and Kwong S, IEEE Trans Ind Electr 43 (1996) 519, https://doi.org/10.1109/41.538609.

    Article  Google Scholar 

  41. Sathiya P., Panneerselvam K, and Jaleel M Y A, Mater Des 36 (2012) 490.

    Article  Google Scholar 

  42. Correia D S, Gonçalves C V, Cunhada S S, Ferraresi Jr. V A, J Mater Process Technol 160 (2005) 70.

    Article  Google Scholar 

  43. Bhaduri A K, Gill T P S, Albert S K, Shanmugam K, and Iyer D R, Nucl Eng Des 206 (2001) 249.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Mandal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Mandal, S., Nandi, G. et al. Metaheuristic Based Parametric Optimization of TIG Welded Joint. Trans Indian Inst Met 71, 1963–1973 (2018). https://doi.org/10.1007/s12666-018-1330-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-018-1330-z

Keywords

Navigation