Skip to main content
Log in

Numerical Modelling Methods for Ultrasonic Wave Propagation Through Polycrystalline Materials

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present article addresses the development at Centre for Non-destructive Evaluation, Indian Institute of Technology Madras, of three different numerical methods, namely finite element, ray tracing and finite-difference time-domain methods for investigating the propagation of ultrasonic waves through polycrystalline media. These methods are believed to aid in better understanding of ultrasonic wave interaction in materials exhibiting both simple and complex grain morphologies. The understanding is expected to provide an improved non-destructive assessment of material and defect characterisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yalda I, Margetan F J, and Thompson R B, J Acoust Soc Am 99 (1996) 3445. https://doi.org/10.1121/1.414991.

    Article  Google Scholar 

  2. Spies M, Rieder H, Dillhöfer A, Schmitz V, and Müller W, J Nondestruct Eval 31 (2012) 310. https://doi.org/10.1007/s10921-012-0150-z.

    Article  Google Scholar 

  3. Mason W P, and McSkimin H J, J Acoust Soc Am 19 (1947) 464. https://doi.org/10.1121/1.1916504.

    Article  Google Scholar 

  4. Papadakis E P, J Acoust Soc Am 37 (1965) 711. https://doi.org/10.1121/1.1909401.

    Article  CAS  Google Scholar 

  5. Kumar A, Jayakumar T, Palanichamy P, and Raj B, Scr Mater 40 (1999) 333. https://doi.org/10.1016/s1359-6462(98)00435-7.

    Article  CAS  Google Scholar 

  6. Kumar A, Jayakumar T, and Raj B, Philos Mag A 80 (2000) 2469. https://doi.org/10.1080/01418610008216486.

    Article  CAS  Google Scholar 

  7. Stanke F E, and Kino G S, J Acoust Soc Am 75 (1984) 665. https://doi.org/10.1121/1.390577.

    Article  CAS  Google Scholar 

  8. Weaver R L, J Mech Phys Solids 38 (1990) 55. https://doi.org/10.1016/0022-5096(90)90021-u.

    Article  Google Scholar 

  9. Lobkis O I, and Rokhlin S I, Appl Phys Lett 96 (2010) 2008. https://doi.org/10.1063/1.3416910.

    Article  CAS  Google Scholar 

  10. Papadakis E P, in Ultrasonics, vol. 19 (ed) Edmonds PDBT-M in EP, Academic Press (1981), pp 237–298. https://doi.org/10.1016/S0076-695X(08)60336-1.

    Google Scholar 

  11. Thompson R B, Margetan F J, Haldipur P, Yu L, Li A, Panetta P, and H Wasan, Wave Motion 45 (2008) 655. https://doi.org/10.1016/j.wavemoti.2007.09.008.

    Article  Google Scholar 

  12. Lifshits I M, and Parkhomovskii G D, Zh Eksp Teor Fiz 20 (1950) 175.

    CAS  Google Scholar 

  13. Bhatia A B, J Acoust Soc Am 31 (1959) 1140. https://doi.org/10.1121/1.1907843.

    Article  Google Scholar 

  14. Hirsekorn S, J Acoust Soc Am 72 (1982) 1021. https://doi.org/10.1121/1.388233.

    Article  CAS  Google Scholar 

  15. Thompson B R, Imaging Complex Media Acoust Seism Waves (2002). https://doi.org/10.1007/3-540-44680-x_9.

  16. Calvet M, and Margerin L, J Acoust Soc Am 131 (2012) 1843. https://doi.org/10.1121/1.3682048.

    Article  Google Scholar 

  17. Rokhlin S I, Li J, and Sha G, J Acoust Soc Am 137 (2015) 2655. https://doi.org/10.1121/1.4919333.

    Article  CAS  Google Scholar 

  18. Kube C M, and Turner J A, Wave Motion 57 (2014) 182. https://doi.org/10.1016/j.wavemoti.2015.04.002.

    Article  Google Scholar 

  19. Silk M G, Ultrasonics 19 (1981) 208. https://doi.org/10.1016/0041-624x(81)90004-4.

    Article  Google Scholar 

  20. Ogilvy J A, Ultrasonics 24 (1986) 337. https://doi.org/10.1016/0041-624x(86)90005-3.

    Article  CAS  Google Scholar 

  21. Connolly G D, Modelling of the Propagation of Ultrasound Through Austenitic Steel Welds, Imperial College of London (2009).

  22. Ghoshal G, and Turner J A, IEEE Trans Ultrason Ferroelectr Freq Control 56 (2009) 1419. https://doi.org/10.1109/tuffc.2009.1197.

    Article  Google Scholar 

  23. Shahjahan S, Rupin F, Aubry A, Chassignole B, Fouquet T, and Derode A, Ultrasonics 54 (2014) 358. https://doi.org/10.1016/j.ultras.2013.06.012.

    Article  CAS  Google Scholar 

  24. Van Pamel A, Brett C R, Huthwaite P, and Lowe M J, J Acoust Soc Am 138 (2015) 2326. https://doi.org/10.1121/1.4931445.

    Article  CAS  Google Scholar 

  25. Nakahata K, Sugahara H, Barth M, Köhler B, and Schubert F, Ultrasonics 67 (2016) 18. https://doi.org/10.1016/j.ultras.2015.12.013.

    Article  CAS  Google Scholar 

  26. Shivaprasad S, Balasubramaniam K, and Krishnamurthy C V, AIP Conf Proc 1706 (2016), 070013. https://doi.org/10.1063/1.4940531.

    Article  Google Scholar 

  27. Schubert F, Ultrasonics 42 (2004) 221. https://doi.org/10.1016/j.ultras.2004.01.013.

    Article  Google Scholar 

  28. Pandala A, Shivaprasad S, Krishnamurthy C V, and Balasubramaniam K, 8th International Symposium NDT Aerospace (2016), pp 1–9.

  29. Volker A, Soares M D E, Melo S E, Wirdelius H, Lundin P, Krix D, Kok P, and Martinez-de Guerenu A, in Proceedings of the 19th WCNDT (2016), pp 1–8.

  30. Shivaprasad S, Pandala A, Krishnamurthy C V, and Balasubramaniam K, J Acoust Soc Am 144 (2018) 3313. https://doi.org/10.1121/1.5082298.

    Article  CAS  Google Scholar 

  31. Van Pamel A, Ultrasonic Inspection of Highly Scattering Materials, Imperial College of London (2015).

  32. Van Pamel A, Sha G, Rokhlin S I, and Lowe M J S, Proc R Soc A Math Phys Eng Sci 473 (2017) 20160738. https://doi.org/10.1098/rspa.2016.0738.

    Article  Google Scholar 

  33. Van Pamel A, Sha G, Lowe M J S, and Rokhlin S I, J Acoust Soc Am 143 (2018) 2394. https://doi.org/10.1121/1.5031008.

    Article  Google Scholar 

  34. Krishnamurthy A, Karthikeyan S, Krishnamurthy C V, and Balasubramaniam K, AIP Conf Proc 820 II (2006) 1894. https://doi.org/10.1063/1.2184750.

  35. Krishnamurthy A, Mohan K V, Karthikeyan S, Krishnamurthy C V, and Balasubramaniam K, J Korean Soc Nondestruct Test 26 (2006) 153.

    Google Scholar 

  36. Purushothaman P, Krishnamurthy C V, and Balasubramaniam K, Proc Natl Semin Exhib Non-Destructive Eval NDE (2011) 8.

  37. Saivathan A, Model Assisted Ultrasonic Phased Array Inspection for Thick Components, Indian Institute of Technology Madras (2010).

  38. Alavudeen S, Krishnamurthy C V, Balasubramaniam K, Pugazhendhi D M, Raghava G, and Gandhi P, J Press Vessel Technol 132 (2010) 011501. https://doi.org/10.1115/1.4000375.

    Article  CAS  Google Scholar 

  39. Balasubramaniam K, Alavudeen S, and Krishnamurthy C V, Technique for imaging using array of focused virtual sources using phased excitation. US Patent No: 2012/0291553 A1 (2016).

  40. SIMSONIC, Ray Based Ultrasonic Simulator n.d. http://www.dhvani-research.com/simson.php. Accessed Sept 16 2018.

  41. SIMUT, Conventional and Phased Array Simulator le n.d. http://www.dhvani-research.com/simut.php. Accessed 16 Sept 2018.

  42. Shivaprasad S, Krishnamurthy C V, and Balasubramaniam K, Int J Adv Eng Sci Appl Math (2018). https://doi.org/10.1007/2fs12572-018-0209-x.

  43. Adithya R, Shivaprasad S B, Balasubramaniam K, and Krishnamurthy C V. Indian Natl Semin Exhib Non-Destruct Eval NDE 2016 (2016).

  44. Shivaprasad S, Saini A, Purushothaman P, Balasubramaniam K, and Krishnamurthy C V, in Proceedings of the 19th WCNDT (2016), pp 1–7.

  45. Uchic M D, Comput Methods Microstruct Relation (2011). https://doi.org/10.1007/978-1-4419-0643-4_2.

    Google Scholar 

  46. Spowart J E, Mullens H M, and Puchala B T, JOM 55 (2003) 35. https://doi.org/10.1007/s11837-003-0173-0.

    Article  CAS  Google Scholar 

  47. Uchic M D, Groeber M A, Dimiduk D M, and Simmons J P, Scr Mater 55 (2006) 23. https://doi.org/10.1016/j.scriptamat.2006.02.039.

    Article  CAS  Google Scholar 

  48. Maire E, Buffière J Y, Salvo L, Blandin J J, Ludwig W, and Létang J M, Adv Eng Mater 3 (2001) 539. https://doi.org/10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-6.

    Article  CAS  Google Scholar 

  49. Landis E N, and Keane D T, Mater Charact 61 (2010) 1305. https://doi.org/10.1016/j.matchar.2010.09.012.

    Article  CAS  Google Scholar 

  50. Anderson M P, Grest G S, and Srolovitz D J, Philos Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 59 (1989) 293. https://doi.org/10.1080/13642818908220181.

    Article  Google Scholar 

  51. Krill C E III, and Chen L-Q, Acta Mater 50 (2002) 3059. http://dx.doi.org/10.1016/S1359-6454(02)00084-8.

    Article  Google Scholar 

  52. Qin R S, and Bhadeshia H K, Mater Sci Technol 26 (2010) 803. https://doi.org/10.1179/174328409x453190.

    Article  CAS  Google Scholar 

  53. Voronoi G, J Für Die Reine Und Angew Math 134 (1908) 198.

    Article  Google Scholar 

  54. Kumar S, and Singh R N, J Am Ceram Soc 78 (1995) 728. https://doi.org/10.1111/j.1151-2916.1995.tb08240.x.

    Article  CAS  Google Scholar 

  55. Espinosa H D, and Zavattieri P D, Mech Mater 35 (2003) 365. https://doi.org/10.1016/s0167-6636(02)00287-9.

    Article  Google Scholar 

  56. Zhang K S, Wu M S, and Feng R, Int J Plast 21 (2005) 801. https://doi.org/10.1016/j.ijplas.2004.05.010.

    Article  CAS  Google Scholar 

  57. Ghazvinian E, Diederichs M S, and Quey R, J Rock Mech Geotech Eng 6 (2014) 506. https://doi.org/10.1016/j.jrmge.2014.09.001.

    Article  Google Scholar 

  58. Zhu H X, Thorpe S M, and Windle A H, Philos Mag A 81 (2001) 2765. https://doi.org/10.1080/01418610010032364.

    Article  CAS  Google Scholar 

  59. Suzudo T, and Kaburaki H, Phys Lett Sect A Gen At Solid State Phys 373 (2009) 4484. https://doi.org/10.1016/j.physleta.2009.09.072.

    Article  CAS  Google Scholar 

  60. Bathe K-J, Finite Element Procedures, 2nd edi, Prentice-Hall (2006).

  61. COMSOL, LiveLink for MATLAB User’s Guide: Version 5.2 (2015).

  62. Drozdz M B, Efficient Finite Element Modelling of Ultrasound Waves in Elastic Media, Imperial College London (2008).

  63. Schmerr L W, Fundam Ultrasonic Nondestruct Eval (1998). https://doi.org/10.1007/978-1-4899-0142-2.

    Book  Google Scholar 

  64. Ledbetter H M, and Naimon E R, J Phys Chem Ref Data 3 (1974) 897. https://doi.org/10.1063/1.3253150.

    Article  CAS  Google Scholar 

  65. Barber C B, Dobkin D P, and Huhdanpaa H, ACM Trans Math Softw 22 (1996) 469. https://doi.org/10.1145/235815.235821.

    Article  Google Scholar 

  66. Rycroft C H, Chaos (2009) https://doi.org/10.1063/1.3215722.

    Article  Google Scholar 

  67. Groeber M A, and Jackson M A, Integr Mater Manuf Innov 3 (2014) 5. https://doi.org/10.1186/2193-9772-3-5.

    Article  Google Scholar 

  68. Quey R, Dawson P R, and Barbe F, Comput Methods Appl Mech Eng 200 (2011) 1729. https://doi.org/10.1016/j.cma.2011.01.002.

    Article  Google Scholar 

  69. Shewchuk J R, Comput Geom 22 (2002) 21. https://doi.org/10.1016/S0925-7721(01)00047-5.

    Article  Google Scholar 

  70. Ogilvy J A, NDT Int 18 (1985) 67. https://doi.org/10.1016/0308-9126(85)90100-2.

    Article  Google Scholar 

  71. Ogilvy J A, Appl Math Model 14 (1990) 237. https://doi.org/10.1016/0307-904x(90)90014-v.

    Article  Google Scholar 

  72. Ogilvy J A, NDT E Int 25 (1992) 3. https://doi.org/10.1016/0963-8695(92)90002-x.

    Article  Google Scholar 

  73. Ogilvy J A, Ultrasonics 26 (1988) 318. https://doi.org/10.1016/0041-624X(88)90029-7.

    Article  Google Scholar 

  74. Slawinski M A, Waves and Rays in Elastic Continua, World Scientific (2010). https://doi.org/10.1142/7486.

  75. Virieux J, Geophysics 49 (1984) 1933. https://doi.org/10.1190/1.1441605.

    Article  Google Scholar 

  76. Saenger E H, and Bohlen T, Geophysics 69 (2004) 583. https://doi.org/10.1190/1.1707078.

    Article  Google Scholar 

  77. Saenger E H, Gold N, and Shapiro S A, Wave Motion 31 (2000) 77. https://doi.org/10.1016/s0165-2125(99)00023-2.

    Article  Google Scholar 

  78. Lisitsa V, and Vishnevskiy D, Geophys Prospect 58 (2010) 619. https://doi.org/10.1111/j.1365-2478.2009.00862.x.

    Article  Google Scholar 

  79. Di Bartolo L, Dors C, and Mansur W J, Geophys Prospect 63 (2015) 1097. https://doi.org/10.1111/1365-2478.12210.

    Article  Google Scholar 

  80. Pandala A, Shivaprasad S, Krishnamurthy C V, and Balasubramaniam K, Nondestruct Test Diagon 2 (2018) 11. https://doi.org/10.26357/bnid.2018.008.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Board of Research and Nuclear Science (BRNS) (Grant No. MEE/11-12/282/BRNS/KRIS), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shivaprasad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivaprasad, S., Krishnamurthy, C.V., Pandala, A. et al. Numerical Modelling Methods for Ultrasonic Wave Propagation Through Polycrystalline Materials. Trans Indian Inst Met 72, 2923–2932 (2019). https://doi.org/10.1007/s12666-019-01739-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-019-01739-4

Keywords

Navigation