Skip to main content
Log in

Influence of Aging Temperature on Functional Fatigue Behavior of a Ti50Ni45Cu5 Shape Memory Alloy

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Smart actuators, using materials with a memory, are an attractive alternative to conventional actuators due to their unique properties, such as high energy density, low power-to-weight ratio, simplicity of design, and miniaturization of size. However, the continuous cyclic operation of such devices, within their transformation temperature range, leads to the degradation of their functional properties. In this paper, the degradation of functional properties, such as recovery strain, permanent strain, and critical transition temperatures, of an Ni45Ti50Cu5 (at.%) shape memory alloy, aged at four different temperatures, ranging from 450 to 600 °C, was experimentally investigated under constant stress. The results reveal that all alloys underwent a single-step transition from B2 → B19’ at all aging temperatures. The aging temperature has a significant impact on recovery strain and permanent strain. The permanent strain accumulation after every cycle is minimized as the temperature of aging is raised to 550 °C due to the strengthening of the matrix by precipitate particles. Above this temperature, it starts to increase due to the coarsening of the precipitate particles. Aging treatment also helps to achieve faster cyclic stability during thermomechanical cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13

Similar content being viewed by others

References

  1. Van Humbeeck J, Adv. Eng. Mater3(11) (2001) 837.

  2. Mohd Jani J, Leary M, Subic A, and Gibson M A, Mater. Des. 56 (2014) 1078. https://doi.org/10.1016/j.matdes.2013.11.084.

    Article  CAS  Google Scholar 

  3. Menna C, Auricchio F, and Asprone D, Applications of Shape Memory Alloys in Structural Engineering, Elsevier Ltd, New York (2015). https://doi.org/10.1016/B978-0-08-099920-3.00013-9.

    Book  Google Scholar 

  4. Otsuka K, and Wayman C M, Shape Memory Materials, Cambridge University Press, Cambridge (1999).

    Google Scholar 

  5. Otsuka K, and Ren X, Prog. Mater. Sci. 50 (2005) 511. https://doi.org/10.1016/j.pmatsci.2004.10.001.

    Article  CAS  Google Scholar 

  6. Lexcellent C, Shape-memory Alloys Handbook, Wiley, New York (2013). https://doi.org/10.1002/9781118577776.

    Book  Google Scholar 

  7. Calhoun C, Wheeler R, Baxevanis T, and Lagoudas D C, Scr. Mater. 95 (2015) 58. https://doi.org/10.1016/j.scriptamat.2014.10.005.

    Article  CAS  Google Scholar 

  8. Eggeler G, Hornbogen E, Yawny A, Heckmann A, and Wagner M, Mater. Sci. Eng. A 378 (2004) 24. https://doi.org/10.1016/j.msea.2003.10.327.

    Article  CAS  Google Scholar 

  9. Lagoudas D C, Miller D A, Rong L, and Kumar P K, Smart Mater. Struct. 18 (2009) 85021.

    Article  Google Scholar 

  10. Morgan N B, and Friend C M, Le J. Phys. IV. 11 (2001) Pr8. https://doi.org/10.1051/jp4:2001855.

    Article  Google Scholar 

  11. Zarnetta R, Takahashi R, Young M L, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, others, Chu Y S, Srivastava V, James R D, Takeuchi I, Eggeler G, and Ludwig A, Adv. Funct. Mater. 20 (2010) 1917. https://doi.org/10.1002/adfm.200902336.

    Article  CAS  Google Scholar 

  12. Tong Y, Gu H, James H, Qi W, Shuitcev A V, and Li L, J. Alloys Compd. 782 (2019) 343. https://doi.org/10.1016/j.jallcom.2018.12.219.

    Article  CAS  Google Scholar 

  13. Cui J, Chu Y S, Famodu O, Furuya Y, Hattrick-Simpers J, James R D, Ludwig A, Thienhaus S, Wuttig M, Zhang Z, and Takeuchi I, Nat. Mater. 5 (2006) 286. https://doi.org/10.1038/nmat1593.

    Article  CAS  Google Scholar 

  14. Gu H, Bumke L, Chluba C, Quandt E, and James R D, Mater. Today. 21 (2018) 265. https://doi.org/10.1016/j.mattod.2017.10.002.

    Article  CAS  Google Scholar 

  15. Chen X, Srivastava V, Dabade V, and James R D, J. Mech. Phys. Solids 61 (2013) 2566. https://doi.org/10.1016/j.jmps.2013.08.004.

    Article  CAS  Google Scholar 

  16. Jiang S, Zhang Y, Zhao Y, Liu S, Li H U, and Zhao C, Trans. Nonferrous Met. Soc. China 25 (2015) 4063. https://doi.org/10.1016/S1003-6326(15)64056-0.

    Article  CAS  Google Scholar 

  17. Jiang S Y, Zhao Y N, Zhang Y Q, Hu L, and Liang Y L, Trans. Nonferrous Met. Soc. China (English Ed.) 23 (2013) 3658. https://doi.org/10.1016/S1003-6326(13)62914-3.

    Article  CAS  Google Scholar 

  18. Radi A, Khalil-Allafi J, Etminanfar M R, Pourbabak S, Schryvers D, and Amin-Ahmadi B, Mater. Des. 142 (2018) 93. https://doi.org/10.1016/j.matdes.2018.01.024.

    Article  CAS  Google Scholar 

  19. Qin Q, Peng H, Fan Q, Zhang L, and Wen Y, J. Alloys Compd. 739 (2018) 873. https://doi.org/10.1016/j.jallcom.2017.12.128.

    Article  CAS  Google Scholar 

  20. Zheng Y, Jiang F, Li L, Yang H, and Liu Y, Acta Mater. 56 (2008) 736. https://doi.org/10.1016/j.actamat.2007.10.020.

    Article  CAS  Google Scholar 

  21. Chang S H, Lin K H, and Wu S K, Materials (Basel). (2017). https://doi.org/10.3390/ma10070704.

    Article  Google Scholar 

  22. Huang W, Mater. Des. 23 (2002) 11.

    Article  CAS  Google Scholar 

  23. Nam T H, Saburi T, Nakata Y, and Shimizu K, Mater. Trans. JIM. 31 (1990) 1050.

    Article  CAS  Google Scholar 

  24. Bricknell R H, Melton K N, and Mercier O, Metall. Trans. A. 10 (1979) 693. https://doi.org/10.1007/BF02658390.

    Article  Google Scholar 

  25. Nam T H, Saburi T, and Shimizu K K K, Mater. Trans. JIM. 31 (1990) 959. https://doi.org/10.2320/matertrans1989.31.959.

    Article  Google Scholar 

  26. Nespoli A, and Besseghini S, J. Therm. Anal. Calorim. 103 (2011) 821. https://doi.org/10.1007/s10973-010-1042-z.

    Article  CAS  Google Scholar 

  27. Van Humbeeck J, Le J. Phys. IV. 01 (1991) C4-189. https://doi.org/10.1051/jp4:1991429.

    Article  Google Scholar 

  28. Padula S, Qiu S, Gaydosh D, Noebe R, Bigelow G, Garg A, and Vaidyanathan R, Metall. Mater. Trans. A 43 (2012) 4610. https://doi.org/10.1007/s11661-012-1267-5.

    Article  CAS  Google Scholar 

  29. Saikrishna C N, Ramaiah K V, Prabhu S A, and Bhaumik S K, Bull. Mater. Sci. 32 (2009) 343. https://doi.org/10.1007/s12034-009-0049-1.

    Article  CAS  Google Scholar 

  30. Akin E, Effect of Aging Heat Treatments on Ni52Ti48 Shape Memory Alloy, Texas A & M University, College Station (2011).

    Google Scholar 

  31. Bhaumik S K, Saikrishna C N, Ramaiah K V, and Venkataswamy M A, in: Key Engineering Materials (2008), pp 301–316. https://doi.org/10.4028/www.scientific.net/KEM.378-379.301.

  32. Omrani E, and Shokuhfar A, Int. J. Metall. Met. Phys. 4 (2019) 034.

    Google Scholar 

  33. Phillips F R, Wheeler R W, Geltmacher A B, and Lagoudas D C, Int. J. Fatigue 124 (2019) 315. https://doi.org/10.1016/j.ijfatigue.2018.12.019.

    Article  Google Scholar 

  34. Basavarajappa N S S, Arun K V, and Yadav S M, J. Miner. Mater. Charact. Eng. 09 (2010) 811. https://doi.org/10.4236/jmmce.2010.99058.

    Article  Google Scholar 

  35. Soto-Parra D E, Flores-Zúñiga H, López Cuéllar E, Ochoa-Gamboa R A, and Ríos-Jara D, Mater. Res. 17 (2014) 1023. https://doi.org/10.1590/1516-1439.265814.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support of the Science and Engineering Research Board, Department of Science and Technology, India, under the grant of CRG/2019/002267.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Swaminathan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swaminathan, G., Sampath, V. & Adarsh, S.H. Influence of Aging Temperature on Functional Fatigue Behavior of a Ti50Ni45Cu5 Shape Memory Alloy. Trans Indian Inst Met 74, 2435–2446 (2021). https://doi.org/10.1007/s12666-021-02209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02209-6

Keywords

Navigation