Skip to main content
Log in

Microstructural Investigation and Integrated Optimization of Weld Bead Characteristics in Electron Beam Welding of Inconel 825

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

This work presents welding investigation of a popular Ni–Fe–Cr-based alloy (i.e. Inconel 825) using electron beam welding process, considering beam current (I), accelerating voltage (V), welding speed (S), and beam oscillation (O) as weld parameters. Microstructural investigations of the different zones of the welded specimen have been studied. Predictive models for depth of penetration (P) and width of the weld (W) are developed using response surface methodology (RSM). The novelty of this work is the metallurgical investigation and the development of RSM integrated with the JAYA algorithm to optimize weld parameters so as to minimize the width-to-depth ratio (W/P ratio) by maximizing P and minimizing W. Accelerating voltage (V) is found to be the predominant weld parameter on P and W followed by beam current (I). Microstructural study reveals the presence of beneficial twin boundary and strengthening precipitates like TiN and secondary phase precipitate Al4C3 in SEM/EDX analysis. Detrimental structures like migrated grain boundaries and unmixed zone are not witnessed. The RSM-JAYA optimization approach results in an optimum W/P ratio of 1.2405 mm at parameter setting V = 54.52 kV, I = 46 mA, S = 900 mm/min, O = 200 Hz. The validation result shows an improvement of 4.71% in the optimum fitness value. The proposed integrated optimization approach is found robust in locating the optimal solution with minimum numbers of iterations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Dupont J N, Lippold J C, and Kiser S D Welding Metallurgy and Weldability of Nickel Based Alloys, Wiley, Hoboken (2009).

    Book  Google Scholar 

  2. Caron J L, and Sowards J W Weldability of Nickel Based Alloys. Elsevier, Vol 6 (2014).

    Google Scholar 

  3. Prabhu S, and Vinayagam B K, Arch Civ Mech Eng, 11 (2011) 149 . https://doi.org/10.1016/S1644-9665(12)60180-0

    Article  Google Scholar 

  4. Tamang S.K, and Chandrasekaran M, J Braz Soc Mech Sci Eng 39 (2016) 865. https://doi.org/10.1007/s40430-016-0570-2

    Article  Google Scholar 

  5. Choudhury B, and Chandrasekaran M, Mater Today: Proc. 4 (2017) 7519. https://doi.org/10.1016/j.matpr.2017.07.083.

    Article  CAS  Google Scholar 

  6. Kangazian J, Sayyar N, and Shamanian M, Metallogr Microstruct Anal. 6 (2017) 190. https://doi.org/10.1007/s13632-017-0353-x

    Article  CAS  Google Scholar 

  7. Kumar S A, and Sathiya P, Mater Manuf Process, 30 (2015) 1154. https://doi.org/10.1080/10426914.2015.1019092

    Article  CAS  Google Scholar 

  8. Pan Y M, Dunn D S, Cragnolino G A, Sridhar N, Metall Mater Trans A, 31 (2004) 1163. https://doi.org/10.1007/s11661-000-0112-4

    Article  Google Scholar 

  9. Weglowski M S, lacha S B, and Phillips A, Vacuum, 130 (2016) 72. https://doi.org/10.1016/j.vacuum.2016.05.004

    Article  CAS  Google Scholar 

  10. Peng G, Kai-feng Z, Bing-gang Z, Shao-song J, and Bao-wei Z, Trans Nonferrous Met Soc China. 21 (2011) S315. https://doi.org/10.1016/S1003-6326(11)61598-7

    Article  Google Scholar 

  11. Reddy G M, Srinivasa C V, Rao M K S, and Rao K P, Int J Adv Manuf Technol 43 (2009) 671. https://doi.org/10.1007/s00170-008-1751-7

    Article  Google Scholar 

  12. Arulmurugan B, Agilan M, Jerome S, and Arivarasu M, Sådhanå. 43 (2018) 117. https://doi.org/10.1007/s12046-018-0850-x

    Article  CAS  Google Scholar 

  13. Yang D, Jiang H C, Zhao M J, and Rong L J, Mater Des 57 (2014) 21. https://doi.org/10.1016/j.matdes.2013.12.039.

    Article  CAS  Google Scholar 

  14. Xin Y, Hua X, Wang M, and Lou S, J Mater Process Technol. 222 (2015) 381. https://doi.org/10.1016/j.jmatprotec.2015.03.031

    Article  CAS  Google Scholar 

  15. Ramkumar K D, Sai J R, Reddy V S, Gundla S, Harsha T, Saxena V, and Arivazhagan N, J Manuf Processes. 18 (2015) 23. https://doi.org/10.1016/j.msea.2015.05.004

    Article  CAS  Google Scholar 

  16. Sujai S, and Ramkumar K D, J Mater Eng Perform 28 (2019) 1563. https://doi.org/10.1007/s11665-019-03960-0

    Article  CAS  Google Scholar 

  17. Tian Y, Ouyang B, Gontcharov A, Gauvin R, Lowden P, and Brochu M, J Alloys Compd 694 (2017) 429. https://doi.org/10.1016/j.jallcom.2016.10.019

    Article  CAS  Google Scholar 

  18. Caiazzo F, Alfieri V, Cardaropoli F, and Sergi V, Opt Laser Technol. 93 (2017) 180. https://doi.org/10.1016/j.optlastec.2017.03.011

    Article  CAS  Google Scholar 

  19. Sun J, Ren W, Nie P, Huang J, Zhang K, and Li Z, Mater Des 175 (2019) 107823. https://doi.org/10.1016/j.matdes.2019.107823

    Article  CAS  Google Scholar 

  20. Rao R V, Advanced Modeling and Optimization of Manufacturing Processes, Springer, London (2011)

    Book  Google Scholar 

  21. Chandrasekaran M, Muralidhar M, Krishna C M, and Dixit U S, Int J Adv Manuf Technol 46 (2010) 445. https://doi.org/10.1007/s00170-009-2104-x

    Article  Google Scholar 

  22. Moradi M, Arabi H, and Shamsborhan M, Optik 202 (2019) 163619. https://doi.org/10.1016/j.ijleo.2019.163619

    Article  CAS  Google Scholar 

  23. Mostaan H, Shamanian M, Monirvaghefi S M, Behjati P, Szpunar J A, and Sherafati J, Vacuum 109 (2014) 148. https://doi.org/10.1016/j.vacuum.2014.07.019

    Article  CAS  Google Scholar 

  24. Madadi F, Ashrafizadeh F, and Shamanian M, J Alloys Compds 510 (2012) 71. https://doi.org/10.1016/j.jallcom.2011.08.073

    Article  CAS  Google Scholar 

  25. Yaakob K I, Ishak M, Quazi M M, and Salleh M N M, Measurement, 135: 482. https://doi.org/10.1016/j.measurement.2018.10.035

    Article  Google Scholar 

  26. Cai X, Fan C, Lin S, Ji X, and Yang C, Int J Adv Manuf Technol 95 (2018) 2405. https://doi.org/10.1007/s00170-017-1373-z

    Article  Google Scholar 

  27. Bal K S, Dutta M J, and Roy A C, J Braz Soc Mech Sci Eng. 40 (2018) 451. https://doi.org/10.1007/s40430-018-1374-3

    Article  CAS  Google Scholar 

  28. Rao R V, and Rai D P, J Mech Sci Technol 31 (2017) 2513. https://doi.org/10.1007/s12206-017-0449-x.

    Article  Google Scholar 

  29. Rao R V, and Rai D P, J Exp Theor Artif Intell. https://doi.org/10.1080/0952813x.2017.1309692

    Article  Google Scholar 

  30. Muthukumaran V, Nagaraju S, Vasantharaja P, Chandrasekhar N, and Jayakumar T, Mater Manuf Process 31 (2015) 319. https://doi.org/10.1080/10426914.2015.1025974

    Article  CAS  Google Scholar 

  31. Adalarasan R, and Santhanakumar M, J Inst Eng India Ser 96 (2015) 57. https://doi.org/10.1007/s40032-014-0128-y.

    Article  Google Scholar 

  32. Gao Z, Shao X, Jiang P, Cao L, Zhou Q, Yue C, Liu Y, and Wang C, Opt Laser Technol 83 (2016) 153. https://doi.org/10.1016/j.optlastec.2016.04.001.

    Article  CAS  Google Scholar 

  33. Omidvar M, Fard R K, Sohrabpoor H, and Teimouri R, Soft Comput 19 (2015) 609. https://doi.org/10.1007/s00500-014-1282-0.

    Article  Google Scholar 

  34. Choudhury B, Chandrasekaran M, and Devarasiddappa D, J Braz Soc Mech Sci Eng 42 (2020) 308. https://doi.org/10.1007/s40430-020-02390-7

    Article  CAS  Google Scholar 

  35. Squillace A, Prisco U, Ciliberto S, and Astarita A J Mater Process Technol 212 (2012) 427. org/https://doi.org/10.1016/j.jmatprotec.2011.10.005

    Article  CAS  Google Scholar 

  36. Kar J, Roy S K, and Roy G G, Int J Adv Manuf Technol 94 (2017) 4531. https://doi.org/10.1007/s00170-017-1169-1

    Article  Google Scholar 

  37. Shaikh M A, Iqbal M, Ahmad M, Akhtar J I, and Shoaib K A, J Mater Sci Lett 11 (1992) 1009.

    Article  CAS  Google Scholar 

  38. Kou S, Welding Metallurgy. Wiley, Hoboken (2011).

    Google Scholar 

  39. Sayiram G, and Arivazhagan N, Mater Charact 102 (2015) 180. https://doi.org/10.1016/j.matchar.2015.03.006.

    Article  CAS  Google Scholar 

  40. David S A, and Vitek J M, Int Mater Rev 34 (2013) 213. https://doi.org/10.1179/imr.1989.34.1.213

    Article  Google Scholar 

  41. Lippold J C, Welding Metallurgy and Weldability. Wiley, Hoboken (2015)

    Book  Google Scholar 

  42. Paleocrassas A G, Process Characterization of Low Speed, Fiber Laser Welding of AA 7075-T6-Application to Fatigue Crack Repair. Pro Quest (2009).

  43. Katayama S, Kobayashi Y, Mizutani M, and Matsunawa A, J Laser Appl. 13 (2001) 187. https://doi.org/10.2351/1.1404413

    Article  CAS  Google Scholar 

  44. Lippold J C, and Koteki D J, Welding Metallurgy and Weldability of Stainless Steels. Wiley, Hoboken (2005).

    Google Scholar 

  45. Barker T B, Quality by Experimental Design, ASQC Quality Press, Marcel Dekker (1985).

    Google Scholar 

  46. Hwang S, Lee Y, and Yang K, BiotechnolBioeng. 75 (2001) 521. https://doi.org/10.1002/bit.10068

    Article  CAS  Google Scholar 

  47. Rao R V, Int J Ind Eng Comput 7 (2016) 19. https://doi.org/10.5267/j.ijiec.2015.8.004.

    Article  Google Scholar 

  48. Sharma S, Taiwade R V, and Vashishtha H, J Mater Eng Perform 26 (2017) 1146. https://doi.org/10.1007/s11665-017-2570-5.

    Article  CAS  Google Scholar 

  49. Dixit P M, and Dixit U S, Modeling of Metal Forming and Machining Processes: By Finite Element and Soft Computing Methods. Springer, London (2008).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the authorities of IIT, Kharagpur, IIT, Guwahati, NERIST, Arunachal Pradesh, for providing the requisite (experimental and measurement) facilities to conduct the investigation. The authors also acknowledge anonymous reviewers for their comments that enrich the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chandrasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B., Chandrasekaran, M. Microstructural Investigation and Integrated Optimization of Weld Bead Characteristics in Electron Beam Welding of Inconel 825. Trans Indian Inst Met 74, 2681–2701 (2021). https://doi.org/10.1007/s12666-021-02343-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-021-02343-1

Keywords

Navigation