Skip to main content

Advertisement

Log in

A power electronic converter-based microgrid model for simulation studies

Fundamental controls, DER modeling and applications

  • Original Paper
  • Published:
Energy Systems Aims and scope Submit manuscript

Abstract

Microgrids (MGs) are a solution to integrate the distributed energy resources (DERs) in the distribution network. MG simulations require models representing DERs, converters, controls systems, energy sources, loads, electrical networks, etc. The design of the MG’s control systems and understood of MG operation is also an essential subject. The concepts of modeling, operation and control are extensive and each one is a wide area of study. Thus, this paper aims to propose a power electronic converter-based MG benchmark with the fundamental theory about MG control, operation and modeling, besides functional examples of MG operation, providing a reference to implement a MG model. The MG topology is based on the CIGRE Benchmark LV residential system. The DERs modeling is presented and its application in the hierarchical control is highlighted. Two DER representations are modeled, the first one that considers the energy source dynamics and converter dc side, and the second one that only uses an ideal dc source. The MG operation in islanded mode and its transition from and to grid-connected mode is simulated and analyzed using the proposed model. The influences of the DERs representation on the performance of primary, secondary and synchronization controls are evaluated. The results show that the proposed MG model can be applied for MG dynamics studies. Differences in the control performances between the DERs representations are observed, especially in large load increases perturbation, or if high loads make DER operates close to its primary sources capacity limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  1. Guerrero, J.M., Vasquez, J.C., Matas, J., De Vicuña, L.G., Castilla, M.: Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization. IEEE Trans. Ind. Electron. 58(1), 158–172 (2011)

    Article  Google Scholar 

  2. Wang, G., Konstantinou, G., Townsend, C.D., Pou, J., Vazquez, S., Demetriades, G.D., Agelidis, V.G.: A review of power electronics for grid connection of utility-scale battery energy storage systems. IEEE Trans. Sustain. Energy 7(4), 1778–1790 (2016)

    Article  Google Scholar 

  3. Planas, E., Gil-De-Muro, A., Andreu, J., Kortabarria, I., Martínez De Alegría, I.: General aspects, hierarchical controls and droop methods in microgrids: a review. Renew. Sustain. Energy Rev. 17, 147–159 (2013)

    Article  Google Scholar 

  4. Bidram, A., Davoudi, A.: Hierarchical structure of microgrids control system. IEEE Trans. Smart Grid 3(4), 1963–1976 (2012)

    Article  Google Scholar 

  5. Guerrero, J.M., de Vicuna, L.G., Matas, J., Castilla, M., Miret, J.: A wireless controller to enhance dynamic performance of parallel inverters in distributed generation systems. IEEE Trans. Power Electron. 19(5), 1205–1213 (2004)

    Article  Google Scholar 

  6. Mohamed, Y.A.R.I., El-Saadany, E.F.: Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans. Power Electron. 23(6), 2806–2816 (2008)

    Article  Google Scholar 

  7. Olivares, D.E., Mehrizi-Sani, A., Etemadi, A.H., Cañizares, C.A., Iravani, R., Kazerani, M., Hajimiragha, A.H., Gomis-Bellmunt, O., Saeedifard, M., Palma-Behnke, R., Jiménez-Estévez, G.A., Hatziargyriou, N.D.: Trends in microgrid control. IEEE Trans. Smart Grid 5(4), 1905–1919 (2014)

    Article  Google Scholar 

  8. Tayab, U. B., Roslan, M. A. B., Hwai, L. J., Kashif, M.: A review of droop control techniques for microgrid. Renew. Sustain. Energy Rev. 76, 717–727 (2017)

  9. Yazdani, A., Iravani, R.: Voltage-Sourced Converters in Power Systems. Wiley, Hoboken (2010)

    Book  Google Scholar 

  10. Xu, Y., Sun, H., Gu, W., Xu, Y., Li, Z.: “Optimal Distributed Control for Secondary Frequency and Voltage Regulation in an Islanded Microgrid,” IEEE Transactions on Industrial Informatics, vol. 3203, no. c, (2018)

  11. Bevrani, H., Habibi, F., Babahajyani, P., Watanabe, M., Mitani, Y.: Intelligent frequency control in an AC microgrid: Online PSO-based fuzzy tuning approach. IEEE Trans. Smart Grid 3(4), 1935–1944 (2012)

    Article  Google Scholar 

  12. Ahmadi, S., Shokoohi, S., Bevrani, H.: Electrical Power and Energy Systems A fuzzy logic-based droop control for simultaneous voltage and frequency regulation in an AC microgrid. Int. J. Electr. Power Energy Syst. 64, 148–155 (2015)

    Article  Google Scholar 

  13. Shokoohi, S., Golshannavaz, S., Khezri, R., Bevrani, H.: Intelligent secondary control in smart microgrids: an on-line approach for islanded operations. Optim. Eng. 19(4), 917–936 (2018)

    Article  MATH  Google Scholar 

  14. Qian, T., Liu, Y., Zhang, W., Tang, W., Shahidehpour, M.: Event-triggered updating method in centralized and distributed secondary controls for Islanded microgrid restoration. IEEE Trans. Smart Grid 11(2), 1387–1395 (2020)

    Article  Google Scholar 

  15. Deng, C., Wang, Y., Wen, C., Xu, Y., Lin, P.: Distributed resilient control for energy storage systems in cyber-physical microgrids. IEEE Trans. Industr. Inf. 17, 1331–1341 (2021)

    Article  Google Scholar 

  16. Nguyen, T. L., Wang, Y., Tran, Q. T., Caire, R., Xu, Y., Gavriluta, C.: A Distributed Hierarchical control framework in Islanded microgrids and its agent-based design for cyber-physical implementations. IEEE Trans. Ind. Electron. 0046, no. c, pp. 1, (2020)

  17. Lee, C., Jiang, R., Cheng, P.: A grid synchronization method for droop-controlled distributed energy resource converters. IEEE Trans. Ind. Appl. 49, 954–962 (2013)

    Article  Google Scholar 

  18. Tang, F., Guerrero, J.M., Vasquez, J.C., Wu, D., Meng, L.: Distributed active synchronization strategy for microgrid seamless reconnection to the grid under unbalance and harmonic distortion. IEEE Transactions on Smart Grid 6, 2757–2769 (2015)

    Article  Google Scholar 

  19. Du, Y., Tu, H., Lukic, S.: Distributed control strategy to achieve synchronized operation of an islanded mg. IEEE Transactions on Smart Grid 10, 4487–4496 (2019)

    Article  Google Scholar 

  20. Katiraei, F., Iravani, M. R., Lehn, P.: “Micro-grid autonomous operation during and subsequent to islanding process,” 2004 IEEE Power Engineering Society General Meeting, 2,(1), 2175, (2004)

  21. Talapur, G.G., Suryawanshi, H.M., Xu, L., Shitole, A.B.: A Reliable Microgrid with Seamless Transition between Grid Connected and Islanded Mode for Residential Community with Enhanced Power Quality. IEEE Trans. Ind. Appl. 54(5), 5246–5255 (2018)

    Article  Google Scholar 

  22. Ganjian-Aboukheili, M., Shahabi, M., Shafiee, Q., Guerrero, J.M.: Seamless transition of microgrids operation from grid-connected to islanded mode. IEEE Transactions on Smart Grid 11(3), 2106–2114 (2020)

    Article  Google Scholar 

  23. Shi, D., Chen, X., Wang, Z., Zhang, X., Yu, Z., Wang, X., Bian, D.: A distributed cooperative control framework for synchronized reconnection of a multi-bus microgrid. IEEE Transactions on Smart Grid 9, 6646–6655 (2018)

    Article  Google Scholar 

  24. Rocabert, J., Luna, A., Blaabjerg, F., Rodríguez, P.: Control of power converters in AC microgrids. IEEE Trans. Power Electron. 27(11), 4734–4749 (2012)

    Article  Google Scholar 

  25. Bidram, A., Davoudi, A., Lewis, F.L., Guerrero, J.M.: Distributed cooperative secondary control of microgrids using feedback linearization. IEEE Trans. Power Syst. 28(3), 3462–3470 (2013)

    Article  Google Scholar 

  26. Li, Y.W., Kao, C.N.: An accurate power control strategy for power-electronics-interfaced distributed generation units operating in a low-voltage multibus microgrid. IEEE Trans. Power Electron. 24(12), 2977–2988 (2009)

    Article  Google Scholar 

  27. Delille, G., François, B., Malarange, G.: Dynamic frequency control support by energy storage to reduce the impact of wind and solar generation on isolated power system’s inertia. IEEE Transactions on Sustainable Energy 3(4), 931–939 (2012)

    Article  Google Scholar 

  28. Farrokhabadi, M., Konig, S., Canizares, C.A., Bhattacharya, K., Leibfried, T.: Battery Energy Storage System Models for Microgrid Stability Analysis and Dynamic Simulation. IEEE Trans. Power Syst. 33(2), 2301–2312 (2018)

    Article  Google Scholar 

  29. Ma, T., Yang, H., Lu, L.: Solar photovoltaic system modeling and performance prediction. Renew. Sustain. Energy Rev. 36, 304–315 (2014)

    Article  Google Scholar 

  30. Farias, G. A. B., Reginatto, R.: “Anti-windup action in inverters control of distributed generation photovoltaic systems,” 2018 13th IEEE International Conference on Industry Applications, INDUSCON 2018 - Proceedings, vol. 6, pp. 367–374, (2019)

  31. Strunz, K., Abbey, C., Andrieu, C., Campbell, R.C., Fletcher, R.: Benchmark Systems for Network Integration of Renewable and Distributed Energy Resources. No. April, CIGRE (2014)

    Google Scholar 

  32. Ayaz, M.S., Azizipanah-Abarghooee, R., Terzija, V.: “European LV microgrid benchmark network: Development and frequency response analysis,” 2018 IEEE International Energy Conference. ENERGYCON 2018, 1–6 (2018)

    Google Scholar 

  33. Raza, S. A., Jiang, J.: “A Benchmark Distribution System for Investigation of Residential Microgrids With Multiple Local Generation and Storage Devices,” IEEE Open Access Journal of Power and Energy, vol. 7, no. November 2019, pp. 41–50, (2020)

  34. Sun, Q., Zhou, J., Guerrero, J.M., Zhang, H.: Hybrid Three-Phase/Single-Phase Microgrid Architecture With Power Management Capabilities. IEEE Trans. Power Electron. 30, 5964–5977 (2015)

    Article  Google Scholar 

  35. Montoya, O.D., Gil-González, W., Garces, A.: Distributed energy resources integration in single-phase microgrids: An application of IDA-PBC and PI-PBC approaches. International Journal of Electrical Power & Energy Systems 112, 221–231 (2019)

    Article  Google Scholar 

  36. Bazargan, D., Bahrani, B., Filizadeh, S.: Reduced Capacitance Battery Storage DC-Link Voltage Regulation and Dynamic Improvement Using a Feedforward Control Strategy. IEEE Trans. Energy Convers. 33(4), 1659–1668 (2018)

    Article  Google Scholar 

  37. Calzo, G. Lo, Lidozzi, A., Solero, L., Crescimbini, F.: “Lc filter design for on-grid and off-grid distributed generating units,” IEEE Transactions on Industry Applications, vol. 51, no. 2, pp. 1639–1650, (2015)

  38. Jayaraman, M., Sreedevi, V. T., Balakrishnan, R.: “Analysis and design of passive filters for power quality improvement in standalone pv systems,” in 2013 Nirma University International Conference on Engineering (NUiCONE), pp. 1–6, (2013)

  39. Reznik, A., Simões, M.G., Al-Durra, A., Muyeen, S.M.: \(lcl\) filter design and performance analysis for grid-interconnected systems. IEEE Trans. Ind. Appl. 50(2), 1225–1232 (2014)

    Article  Google Scholar 

  40. Gkountaras, A.: Modeling techniques and control strategies for inverter dominated microgrids. PhD thesis, Universitätsverlag der TU Berlin, (2017)

  41. Gkountaras, A., Dieckerhoff, S., Sezi, T.: “Evaluation of current limiting methods for grid forming inverters in medium voltage microgrids,” 2015 IEEE Energy Conversion Congress and Exposition. ECCE 2015, 1223–1230 (2015)

    Google Scholar 

  42. Wang, J., Chang, N.C.P., Feng, X., Monti, A.: Design of a Generalized Control Algorithm for Parallel Inverters for Smooth Microgrid Transition Operation. IEEE Trans. Industr. Electron. 62(8), 4900–4914 (2015)

    Article  Google Scholar 

  43. Das, D., Gurrala, G., Jayachandra Shenoy, U.: “Linear quadratic regulator-based bumpless transfer in microgrids,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 416–425, (2018)

  44. Gao, F., Iravani, M.R.: A control strategy for a distributed generation unit in grid-connected and autonomous modes of operation. IEEE Trans. Power Delivery 23(2), 850–859 (2008)

    Article  Google Scholar 

  45. Ioris, D., Almeida, A. B. D., Godoy, P. T. D.: “A Microgrid Islanding Performance Study Considering Time Delay in Island Detection,” in ISGT – LA 2020, (Montevidel), (2020)

  46. Pegueroles-Queralt, J., Bianchi, F.D., Gomis-Bellmunt, O.: Control of a lithium-ion battery storage system for microgrid applications. J. Power Sources 272, 531–540 (2014)

    Article  Google Scholar 

  47. Delille, G.M.A.: Contribution du Stockage à la Gestion Avancée des Systèmes Électriques : approches Organisationnelles et Technico-économiques dans les Réseaux de Distribution. Theses, Ecole Centrale de Lille (2010)

    Google Scholar 

  48. Mukherjee, N., Strickland, D.: Control of Cascaded DC-DC Converter-Based Hybrid Battery Energy Storage Systems - Part II: Lyapunov Approach. IEEE Trans. Industr. Electron. 63(5), 3050–3059 (2016)

    Article  Google Scholar 

  49. Yang, Y., Chen, W., Blaabjerg, F.: Advanced Control of Photovoltaic and Wind Turbines Power Systems, pp. 41–89. Cham: Springer International Publishing, (2014)

  50. Villalva, M.G., Gazoli, J.R., Filho, E.R.: Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Trans. Power Electron. 24(5), 1198–1208 (2009)

    Article  Google Scholar 

  51. Blair, N., Diorio, N., Freeman, J., Gilman, P., Janzou, S., Neises, T. W., Wagner, M. J.: “System Advisor Model (SAM) General Description,” Tech. Rep. NREL/TP-6A20-70414, National Renewable Energy Laboratory, (2018)

  52. Nedumgatt, J. J., Jayakrishnan, K. B., Umashankar, S., Vijayakumar, D., Kothari, D. P.: “Perturb and observe mppt algorithm for solar pv systems-modeling and simulation,” in 2011 Annual IEEE India Conference, pp. 1–6, (2011)

  53. Han, H., Hou, X., Yang, J., Wu, J., Su, M., Guerrero, J.M.: Review of power sharing control strategies for islanding operation of ac microgrids. IEEE Transactions on Smart Grid 7(1), 200–215 (2016)

    Article  Google Scholar 

  54. Lasseter, R.H.: “MicroGrids,” Proc. IEEE Power Engineer. Soc. Winter Meet 1, 305–308 (2002)

    Article  Google Scholar 

  55. Chandorkar, M.C., Divan, D.M., Adapa, R.: Control of parallel connected inverters in standalone ac supply systems. IEEE Trans. Ind. Appl. 29(1), 136–143 (1993)

    Article  Google Scholar 

  56. Yao, W., Chen, M., Matas, J., Guerrero, J.M., Qian, Z.M.: Design and analysis of the droop control method for parallel inverters considering the impact of the complex impedance on the power sharing. IEEE Trans. Industr. Electron. 58(2), 576–588 (2011)

    Article  Google Scholar 

  57. He, J., Li, Y.W.: Analysis, design, and implementation of virtual impedance for power electronics interfaced distributed generation. IEEE Trans. Ind. Appl. 47(6), 2525–2538 (2011)

    Article  MathSciNet  Google Scholar 

  58. Ramezani, M., Li, S., Sun, Y.: “DQ-reference-frame based impedance and power control design of islanded parallel voltage source converters for integration of distributed energy resources,” Electric Power Systems Research, vol. 168, no. August 2018, pp. 67–80, (2019)

  59. Lopes, J.A., Moreira, C.L., Madureira, A.G.: Defining control strategies for microgrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)

    Article  Google Scholar 

  60. Dorfler, F., Simpson-Porco, J.W., Bullo, F.: Breaking the hierarchy: Distributed control and economic optimality in Microgrids. IEEE Transactions on Control of Network Systems 3(3), 241–253 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Lou, G., Gu, W., Sheng, W., Song, X., Gao, F.: Distributed Model Predictive Secondary Voltage Control of Islanded Microgrids With Feedback Linearization. IEEE Access 6, 50169–50178 (2018)

    Article  Google Scholar 

  62. Khayat, Y., Shafiee, Q., Heydari, R., Naderi, M., Dragičevi\(\acute{c}\), T., Simpson-Porco, J. W., Dörfler, F., Fathi, M., Blaabjerg, F., Guerrero, J. M., Bevrani, H.: “On the secondary control architectures of ac microgrids: An overview,” IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6482–6500, (2020)

  63. Zamora, R., Srivastava, A. K.: “Controls for microgrids with storage: Review, challenges, and research needs,” Renewable and Sustainable Energy Reviews, vol. 14, pp. 2009–2018, sep (2010)

  64. Dimeas, A., Hatziargyriou, N.: “A multiagent system for microgrids,” IEEE Power Engineering Society General Meeting., pp. 55–58, (2005)

  65. Hui, Q., Haddad, W.M.: Distributed nonlinear control algorithms for network consensus. Automatica 44(9), 2375–2381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  66. Mokhtari, G., Nourbakhsh, G., Ghosh, A.: Smart coordination of energy storage units (ESUs) for voltage and loading management in distribution networks. IEEE Trans. Power Syst. 28(4), 4812–4820 (2013)

    Article  Google Scholar 

  67. Xu, Z., Yang, P., Zheng, C., Zhang, Y., Peng, J., Zeng, Z.: “Analysis on the organization and Development of multi-microgrids,” Renewable and Sustainable Energy Reviews, vol. 81, no. June 2017, pp. 2204–2216, (2018)

  68. Godoy, P. T., Almeida, A. B., Marujo, D.: “Unified Centralised / Decentralised Frequency Control Structure for Microgrids,” IET Renewable Power Generation, pp. 1–11, (2020)

  69. Vandoorn, T.L., Meersman, B., De Kooning, J.D.M., Vandevelde, L.: Transition from islanded to grid-connected mode of microgrids with voltage-based droop control. IEEE Trans. Power Syst. 28, 2545–2553 (2013)

    Article  Google Scholar 

  70. Taher, S.A., Zolfaghari, M., Cho, C., Abedi, M., Shahidehpour, M.: A new approach for soft synchronization of microgrid using robust control theory. IEEE Trans. Power Delivery 32, 1370–1381 (2017)

    Article  Google Scholar 

  71. Cho, C., Jeon, J., Kim, J., Kwon, S., Park, K., Kim, S.: Active synchronizing control of a microgrid. IEEE Trans. Power Electron. 26, 3707–3719 (2011)

    Article  Google Scholar 

  72. Eberlein, S., Rudion, K.: Investigation of resynchronisation process and its influence on microgrid components. CIRED Workshop 2016, 1–4 (2016)

    Google Scholar 

  73. Eberlein, S., Rudion, K.: “Influence of inaccurate low voltage microgrid synchronization on synchronous generators,” in 2018 IEEE International Energy Conference (ENERGYCON), pp. 1–6, (2018)

  74. Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S.: State of the art in research on microgrids: A review. IEEE Access 3, 890–925 (2015)

    Article  Google Scholar 

  75. “IEEE standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces,” IEEE Std 1547-2018 (Revision of IEEE Std 1547-2003), pp. 1–138, (2018)

  76. de Godoy, P. T., Poloni, P., de Almeida, A. B., Marujo, D.: “Centralized secondary control assessment of microgrids with battery and diesel generator,” 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), pp. 1–6, (2019)

  77. Liu, S., Wang, X., Member, S., Liu, P.X., Member, S.: Impact of Communication Delays on Secondary Frequency Control in an Islanded Microgrid. IEEE Trans. Industr. Electron. 62(4), 2021–2031 (2015)

    Article  Google Scholar 

  78. Lou, G., Gu, W., Xu, Y., Jin, W., Du, X.: Stability Robustness for Secondary Voltage Control in Autonomous Microgrids with Consideration of Communication Delays. IEEE Trans. Power Syst. 33(4), 4164–4178 (2018)

    Article  Google Scholar 

  79. Ahumada, C., Cárdenas, R., Sáez, D., Guerrero, J.M.: Secondary Control Strategies for Frequency Restoration in Islanded Microgrids With Consideration of Communication Delays. IEEE Transactions on Smart Grid 7(3), 1430–1441 (2016)

    Article  Google Scholar 

  80. Poloni, P., Godoy, P. T., de Almeida, A. B., Marujo, D.: “A phase angle synchronization method for a microgrid with diesel generator and inverter-based sources,” in 2019 IEEE PES Innovative Smart Grid Technologies Conference - Latin America (ISGT Latin America), pp. 1–6, (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlan Ioris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Tables 2 and 3 show parameters of BESS model and control, and Tables 4 and 5 show parameters of PV model and control.

Table 2 BESS model—CC/CA converters parameters
Table 3 BESS model—battery and CC/CC converter parameters
Table 4 PV model—CC/CA converters parameters
Table 5 PV model—PV panels and CC/CC converter parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ioris, D., de Godoy, P.T., Felisberto, K.D.R. et al. A power electronic converter-based microgrid model for simulation studies. Energy Syst (2021). https://doi.org/10.1007/s12667-021-00440-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12667-021-00440-0

Keywords

Navigation