Skip to main content

Advertisement

Log in

The Influence of Hydroxyapatite and Calcium Carbonate Microparticles on the Mechanical Properties of Nonwoven Composite Materials Based on Polycaprolactone

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Composite polycaprolactone fibers at different mass fraction (0.025, 0.05, and 0.075) of incorporated calcium carbonate (CaCO3) and hydroxyapatite (HA) microparticles were produced by electrospinning. The scanning electron microscopy (SEM) images of the fiber sheets revealed that the average diameter of the as-spun fibers increases with increasing of filler content assuming into account defects connected with embedding microparticles. At highest content of inorganic fraction (0.075) of HA and CaCO3, a considerable amount of defects, notches, and beads in the fibers were observed. The Young’s modulus (E) and the ultimate tensile strength (UTS) of the composites increased with addition of mass fraction of HA and CaCO3 microparticles. Regression analysis of mechanical properties of binary composites (polymer matrix/filler) was done, and as a result, the approximate equation for mechanical parameter prediction of nonwoven materials was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Shao, Y., Qiao, F., Bernd, L., & Yiu, W. (2008). Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate—polymer composites. Composites: Part B, 39, 933–961.

    Article  Google Scholar 

  2. Bostman, O., & Pihljamaki, H. (2000). Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation. A Review Biomaterials, 21, 2615–2621.

    Article  Google Scholar 

  3. Ondarcuhu, T., & Joachim, C. (1998). Drawing a single nanofibre over hundreds of microns. Europhysics Letters, 42(2), 215–220.

    Article  Google Scholar 

  4. Feng, L., Li, S., et al. (2002). Super-hydrophobic surface of aligned polyacrylonitrile nanofibers. Angewandte Chemie(International ed. In English) 4171221–3.3.

  5. Martin, C. R. (1996). Membrane-based synthesis of nanomaterials. Chemistry of Materials, 8(8), 1739–1746.

    Article  Google Scholar 

  6. Ma, P. X., & Zhang, R. (1999). Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research, 46(1), 60–72.

    Article  Google Scholar 

  7. Liu, G., Ding, J., Qiao, L., Guo, A., Dymov, B. P., Gleeson, J. T., Hashimoto, T., & Saijo, K. (1999). Polystyrene-block-poly (2-cinnamoylethyl methacrylate) nanofibers—preparation, characterization, and liquid crystalline properties. Journal of Chemistry-A European, 5(9), 2740–2749.

    Article  Google Scholar 

  8. Whitesides, G. M., & Grzybowski, B. (2002). Self-assembly at all scales. Science, 295(5564), 2418–2421.

    Article  Google Scholar 

  9. Subbiah, T., Bhat, G. S., Tock, R. W., Param, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569.

    Article  Google Scholar 

  10. Ellison, C. J., Phatak, A., Giles, D. W., Macosko, C. W., & Bates, F. S. (2007). Melt blown nanofibers: fiber diameter distributions and onset of fiber breakup. Polymer, 48(11), 3306–3316.

    Article  Google Scholar 

  11. Wang, Y., Shi, X., Ren, L., Yao, Y., Zhang, F., & Wang, D. A. (2010). Poly(lactide-co-glycolide)/titania composite microsphere-sintered scaffolds for bone tissue engineering applications. Journal of Biomedicine Materials and Research B: Applied Biomaterials, 93, 84–92.

    Google Scholar 

  12. La Gatta, A., De Rosa, A., Laurienzo, P., Malinconico, M., De Rosa, M., & Schiraldi, C. A. (2005). Novel injectable poly (caprolactone)/calcium sulfate system for bone regeneration: synthesis and characterization. Macromolecular Bioscience, 5, 1108–1117.

    Article  Google Scholar 

  13. Frieb, W., Warner, J., Schuth, F., Sing, K. S. W., & Weitkamp, J. (2002). Handbook of porous solids (pp. 29–23). Weinheim: Wiley-VCH.

    Google Scholar 

  14. Hench, L. (1998). A forecast for the future. Biomaterials, 19, 1419–1423.

    Article  Google Scholar 

  15. Seema, A. S., Wendorff, J. H., & Greiner, A. (2008). Use of electrospinning technique for biomedical applications. Polymer, 49, 5603–5621.

    Article  Google Scholar 

  16. Gorna, K., Hund, M., Vucak, M., & Gröhn, F. (2008). Amorphous calcium carbonate in form of spherical nanosized particles and its application as fillers for polymers. Materials Science and Engineering A, 477, 217–225.

    Article  Google Scholar 

  17. Liang, J. (2007). Melt viscoelastic behavior in capillary extrusion of polypropylene/EPDM/glass bead ternary composites. Reinforced Plastic Composites: Part A, 38, 1502–1506.

    Google Scholar 

  18. Xie, X. L., Liu, Q. X., Li, R. K., Zhou, X. P., Zhang, Q. X., Yu, Z. Z., & Mai, Y. W. (2004). Rheological and mechanical properties of PVC/CaCO3 nanocomposites prepared by in situ polymerization. Polymer, 45, 6665–6673.

    Article  Google Scholar 

  19. Di Lorenzo, M. L., Errico, M. E., & Avella, M. (2002). Thermal and morphological characterization of poly(ethylene terephthalate)/calcium carbonate nanocomposites. Materials Science, 37, 2351–2358.

    Article  Google Scholar 

  20. Bartczak, Z., Argon, A. S., Cohen, R. E., & Weinberg, M. (1999). Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer, 40, 2347–2365.

    Article  Google Scholar 

  21. Zuiderduin, W. C., Westzaan, C., Huétink, J., & Gaymans, R. J. (2003). Toughening of polypropylene with calcium carbonate particles. Polymer, 44, 261–275.

    Article  Google Scholar 

  22. Jiang, L., Zhang, J., & Wolcott, M. P. (2007). Comparison of polylactide/nano-sized calcium carbonate and polylactide/montmorillonite composites: reinforcing effects and toughening mechanisms. Polymer, 48, 7632–7644.

    Article  Google Scholar 

  23. Jiang, L., Lam, Y. C., Tam, K. C., Chua, T. H., Sim, G. W., & Ang, L. S. (2005). Strengthening acrylonitrile-butadiene-styrene (ABS) with nano-sized and micron-sized calcium carbonate. Polymer, 46(243), 252.

    Google Scholar 

  24. Khatiwala, V. K., Shekhar, N., Aggarwal, S., & Mandal, U. K. (2008). Biodegradation of poly(caprolactone) (PCL) film by alcaligenes faecalis. Polymers and the Environment, 16, 61–67.

    Article  Google Scholar 

  25. Lei, Y., Rai, B., Ho, K. H., & Teoh, S. H. (2007). In vitro degradation of novel bioactive polycaprolactone–20 % tricalcium phosphate composite scaffolds for bone engineering. Materials Science and Engineering, 27, 293–298.

    Article  Google Scholar 

  26. Rai, B., Teoh, S. H., & Ho, K. H. (2005). An in vitro evaluation of PCL-TCP composites as delivery systems for platelet rich plasma. Journal of Controlled Release, 107, 330–342.

    Article  Google Scholar 

  27. Wang, D. A., Feng, L. X., Ji, J., Sun, Y. H., Zheng, X. X., & Elisseeff, J. H. (2003). Novel human endothelial cell-engineering polyurethane biomaterials for cardiovascular biomedical applications. Journal of Biomedical Materials Research. Part A, 65, 498–510.

    Article  Google Scholar 

  28. Shi, X., Wang, Y., Ren, L., Gong, Y., & Wang, D. A. (2009). Enhancing alendronate release from a novel PLGA/hydroxyapatite microspheric system for bone repairing applications. Pharmaceutical Research, 26, 442–430.

    Article  Google Scholar 

  29. Huang, Y., Liu, H., He, P., Yuan, L., Xiong, H., Xu, Y. M., & Yu, Y. (2010). Nonisothermal crystallization kinetics of modified bamboo fiber/PCL composites. Journal of Applied Polymer Science, 116, 2119–2125.

    Article  Google Scholar 

  30. Patcharaporn, W., Prasit, P., & Pitt, S. (2007). Osteoblastic phenotype expression of MC3T3-E1 cultured on electrospun polycaprolactone fiber mats filled with hydroxyapatite nanoparticles. Biomacromolecules, 8, 2602–2610.

    Article  Google Scholar 

  31. Sanaz, A., Samira, S., & Asma, F. (2012). Enhancement of mechanical and thermal properties of polycaprolactone/chitosan blend by calcium carbonate nanoparticles. Journal of Molecular Science, 13, 4508–4522.

    Article  Google Scholar 

  32. Gomes, M. E., & Reis, R. L. (2004). Biodegradable polymers and composites in biomedical application: from catgut to tissue engineering. International Materials Reviears, 48, 263.

    Google Scholar 

  33. Zargarian, S. S., & Vahid, H. (2010). A nanofibrous composite scaffold of PCL/hydroxyapatite-chitosan/PVA prepared by electrospinning. Journal of Iranian Polymer, 19(6), 457–468.

    Google Scholar 

  34. Patcharaporn, W., Neeracha, S., Prasit, P., & Pitt, S. (2006). Preparation and characterization of novel bone scaffolds based on electrospun polycaprolactone fibers filled with nanoparticles. Macromolecular Bioscience, 6, 70–77.

    Article  Google Scholar 

  35. Wolberg, J. (2005). Data analysis using the method of least squares: extracting the most information from experiments, Springer.

  36. Piggott, M. (2002). Load bearing fibre composites. Kluwer Academic Publishers.

  37. Madsen, B., Joffe, R., Peltola, H., & Nattinen, K. (2011). Short cellulosic fiber/starch acetate composites: micromechanical modeling of Young’s modulus. Journal of Composite Materials, 45, 2119–2131.

    Article  Google Scholar 

  38. Sun, J. J., Bae, C. J., Koh, Y. H., Kim, H. E., & Kim, H. W. (2007). Fabrication of hydroxyapatite-poly(epsilon-caprolactone) scaffolds by a combination of the extrusion and bi-axial lamination processes. Journal of Materials Science Materials in Medicine, 18(6), 1017–1023.

    Article  Google Scholar 

  39. Thomason, J. L. (2009). The influence of fiber length, diameter and concentration on the strength and strain to failure of glass fiber-reinforced polyamide 6, 6. Composites Part A: Applied Science and Manufacturing, 40, 114–124.

    Article  Google Scholar 

  40. Jeong, J. S., Moon, J. S., Jeon, S. Y., Park, J. H., Alegaonkar, P. S., & Yoo, J. B. (2007). Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films, 515, 5136–5141.

    Article  Google Scholar 

  41. Zhou, J., Tang, J., Meng, H., & Yu, J. (2008). Study on PP/calcium sulfate whisker composite. Engineering Plastics Application, 36, 19–22.

    MATH  Google Scholar 

  42. Kamal, K. G., Akshay, K., Pradeep, K. M., Pradeep, S., Sujata, M., Narendra, K. S., Abhinay, M., & Pralay, M. (2012). Polycaprolactone composites with TiO2 for potential nanobiomaterials: tunable properties using different phases. Journal of Physics and Chemistry Chemistry and Physics, 14, 12844–12853.

    Article  Google Scholar 

  43. Wang, J., & Cheung, M. K. (2002). Miscibility and morphology in crystalline/amorphous blends by DSC, FTIR and C solid state NMR. Polymer, 43, 1357–1364.

    Article  Google Scholar 

  44. Parakhonskiy, B. V., Yashchenok, A. M., Svenskaya, Y. U., Fattah, H. A., Inozemtseva, O. A., Tessarolo, F., Antolini, R., & Gorin, D. A. (2014). Size controlled hydroxyapatite and calcium carbonate particles: synthesis and their application as templates for SERS platform. Journal of Colloids and Surfaces B: Biointerfaces, 118, 243–248.

    Article  Google Scholar 

Download references

Acknowledgments

The reported study was partially supported by RFBR, research project No. 12-03-33088 mol_a_ved, Government of the Russian Federation (grant №14.Z50.31.0004 to support scientific research projects implemented under the supervision of leading scientists at Russian institutions and Russian institutions of higher education).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gleb B Sukhorukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metwally, H.A., Ardazishvili, R.V., Severyukhina, A.N. et al. The Influence of Hydroxyapatite and Calcium Carbonate Microparticles on the Mechanical Properties of Nonwoven Composite Materials Based on Polycaprolactone. BioNanoSci. 5, 22–30 (2015). https://doi.org/10.1007/s12668-014-0158-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-014-0158-1

Keywords

Navigation