Skip to main content

Advertisement

Log in

Electro-Magnetohydrodynamic Oscillatory Flow of a Dielectric Fluid Through a Porous Medium with Heat Transfer: Brinkman Model

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The objective of the present study is to investigate the effect of electro-magnetic field and heat transfer on the oscillatory flow of a dielectric fluid through a Darcy’s Brinkman model in a symmetric flexible sinusoidal wavy channel. The equations which govern the Electro-Magneto hydro dynamic of oscillatory flow for a dielectric fluid are made non-dimensional and coordinate transformation is employed to convert the irregular boundary to a regular boundary. The obtained system of equations is solved analytically by using the regular perturbation method with a small amplitude ratio. Approximate solution for the mean axial velocity, the mean electric potential, the mean temperature, and the mean pressure gradient is obtained. Further, the effect of pertinent parameters is demonstrated and discussed. The phenomena of reflux (the mean flow reversal) are discussed. It is found that the critical reflux pressure is greater for a fluid without an electric field. Also, the increase of magnetic field decreases the flow rate which is helpful to control the blood flow during the surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Woodson, H.H., & Melcher, J.R. (1968). Electromechanical Dynamics. New York: Massachusetts Institute of Technology.

    Google Scholar 

  2. Takashima, M. (1970). The stability of a rotating layer of the Maxwell liquid heated from below. Journal of the Physical Society of Japan, 29, 1061–1068.

    Article  Google Scholar 

  3. Takashima, M., & Ghosh, A.K. (1979). Electrohydrodynamic Instability of viscoelastic liquid layer. Journal of the Physical Society of Japan, 47, 1717–1722.

    Article  Google Scholar 

  4. Devi, U.V., Puri, P., Sharma, N.N., Ananthasubramanian, M. (2014). Electrokinetics of cells in dielectrophoretic separation: a biological perspective. BioNanoScience, 4, 276–287.

    Article  Google Scholar 

  5. El-Sayed, M.F., Harouna, M.H., Mostapha, D.R. (2015). Electroconvection peristaltic flow of viscous dielectric liquid sheet in asymmetrical flexible channel. Journal of atomization and sprays, 25, 985–1011.

    Article  Google Scholar 

  6. Srinivasacharya, D., & Rao, G.M. (2017). Modeling of blood flow through a bifurcated artery using nanofluid. BioNanoScience, 7, 1–11.

    Article  Google Scholar 

  7. Akbar, V., & Nadeem, S. (2012). Thermal and velocity slip effects on the peristaltic flow a six constant Jeffrey’s fluid model. International Journal of Heat Mass Transfer, 55, 3964–3970.

    Article  MATH  Google Scholar 

  8. Shahzadi, I., Sadaf, H., Nadeem, S., Saleem, A. (2017). Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. Computer Methods and Programs in Biomedicine, 139, 137–147.

    Article  Google Scholar 

  9. Nadeem, S., & Sadaf, H. (2016). Hypothetical analysis for peristaltic transport of metallic nanoparticles in an inclined annulus with variable viscosity. Bulletin of the Polish Academy of Sciences Technical Sciences, 64, 447–454.

    Article  Google Scholar 

  10. Hayat, T., Nawaz, S., Alsaadi, A., Rafi, M. (2016). Mixed convective peristaltic flow of water based nanofluids with Joule heating and convective boundary conditions. PLoS ONE, 11, 0153537.

    Google Scholar 

  11. Nadeem, S., Mehmood, R., Akbar, N.S. (2012). Non-orthogonal stagnation point flow of a non-Newtonian fluid towards a stretching surface with heat transfer. International Journal of Heat Mass Transfer, 55, 3964–3970.

    Article  Google Scholar 

  12. Hina, S., Mustafa, M., Hayat, T., Alsaedi, A. (2015). Peristaltic flow of couple stress fluid with heat and mass transfer: An application in biomedicine. Journal of Mechanics in Medicine and Biology, 15, 1–17.

    Article  Google Scholar 

  13. Mekheimer, Kh.S., & Abd elmaboid, Y. (2014). Simultaneous effects of variable viscosity and thermal conductivity on peristaltic flow in a vertical asymmetric channel. Canadian Journal of Physics, 92, 1541–1555.

    Article  Google Scholar 

  14. Abd elmaboud, Y., & Mekheimer, Kh.S. (2012). Unsteady pulsatile flow through a vertical constricted annulus with heat transfer. Verlag der Zeitschrift fur Naturforschung, 67, 185–194.

    Google Scholar 

  15. Mekheimer, Kh.S., Hasona, W.M., Abo-Elkhair, R.E., Zaher, A.Z. (2018). Peristaltic blood flow with gold nanoparticles as a third grade nano fluid in catheter: application of cancer therapy. Physics Letters A, 382, 85–93.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hayat, T., Noreen, S., Alhothuali, M., Asghar, S., Alhomaidan, A. (2002). Peristaltic flow under the effects of an induced magnetic field and heat and mass transfer. International Journal of Heat and Mass Transfer, 55, 443–452.

    Article  MATH  Google Scholar 

  17. Abbasi, F.M., Hayat, T., Ahmad, B. (2015). Impact of magnetic field on mixed convective peristaltic flow of water based nanofluids with Joule heating. Verlag der Zeitschrift fur Naturforschung, 70, 125–132.

    Google Scholar 

  18. Mekheimer Kh. S., Salem, A.M., Zaher, A.Z. (2014). Peristatc ally induced MHD slip flow in a porous medium due to a surface acoustic wavy wall. Egyptian Mathematical Society, 22, 143–151.

    Article  MathSciNet  MATH  Google Scholar 

  19. Mekheimer, Kh.S., Salem, A.M., Zaher, A.Z. (2013). Peristaltically Induced Flow Due to a Surface Acoustic Wavy Moving Wall. CHINESE JOURNAL OF PHYSICS, 51, 954–968.

    Google Scholar 

  20. Abo-Elkhair, R.E., Mekheimer, Kh.S., Moawad, A.M.A. (2018). Combine impacts of electrokinetic variable viscosity and partial slip on peristaltic MHD flow through micro-channel, Iranian Journal of science and tecnology transaction A: science. https://doi.org/10.1007/s40995-017-0374-y.

  21. Mekheimer Kh.S. (2008). Effect of induced magnetic field on peristaltic flow of a couple stress Fluid. Physics Letters A, 372, 4271–4278.

    Article  MATH  Google Scholar 

  22. Mekheimer, Kh.S., Saleem, N., Hayat, T. (2012). Simultaneous effects of induced magnetic field and heat and mass transfer on the peristaltic motion of second-order fluid in a channel. International Journal for Numerical Methods in Fluids, 70, 342–358.

    Article  MathSciNet  Google Scholar 

  23. Mekheimer Kh.S. (2004). Peristaltic flow of blood under effect of a magnetic field in a non uniform channel. Applied Mathematics and Computation, 153, 763–777.

    Article  MathSciNet  MATH  Google Scholar 

  24. Abo-Elkhair, R.E., Mekheimer, Kh.S., Moawad, A.M.A. (2017). Cilia walls influence on peristaltically induced motion of magneto-fluid through a porous medium at moderate Reynolds number: Numerical Study. Journal of the Egyptian Mathematical Society, 25, 238–251.

    Article  MathSciNet  MATH  Google Scholar 

  25. El Shehawey, E.F., Mekheimer, Kh.S., Kaldas, S.F., Afifi, N.A.S. (1999). Peristaltic transport through a porous medium. Journal of Biomathematics, 14, 1–13.

    Google Scholar 

  26. El Shehawey, E.F., Sobh, A.M.F., Elbarbary, E.M.E. (2000). Peristaltic motion of a generalized Newtonian fluid through a porous medium. Journal of the Physical Society of Japan, 69, 401–407.

    Article  Google Scholar 

  27. Harris, S.D., Ingham, D.B., Pop, I. (2009). Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip. Transport in Porous Medium, 77, 267–285.

    Article  Google Scholar 

  28. Wolfgangand, K.H. (1955). and Phillips A.M. Cambridge: Addison-Wesley.

    Google Scholar 

  29. Fung, Y.C., & Yih, C.S. (1968). Peristaltic transport. Journal of Applied Mechanics, 35, 669–675.

    Article  MATH  Google Scholar 

  30. Maiti, S., & Misra, J.C. (2011). Peristaltic flow of a fluid in a porous channel: a study having relevance to flow of bile within ducts in a pathological state. International Journal of Engineering Science, 9, 950–966.

    Article  MathSciNet  MATH  Google Scholar 

  31. Yin, F.C.P., & Fung, Y.C. (1971). Comparison of theory and experimen in peristaltic transport. J. Fluid Mech, 47, 93–112.

    Article  Google Scholar 

  32. Graves, R.C., & Davidoff, L.M. (1924). Studies on the ureter and bladder with especial reference to regurgitation of vesical contents. Journal of Urology, 12, 93.

    Article  Google Scholar 

  33. Hutch, J.A. (1967). Vesico-ureteral reflux. In Bergman (Ed.) The Ureter, Harper and Row (pp. 465–507).

  34. Gruber, C.M. (1929). A comparative study of the intravesical ureters in man and in experimental animals. Journal of Urology, 12, 567.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Abo-Elkhair.

Appendix

Appendix

$$\begin{array}{@{}rcl@{}} && h = 1+L_{2}, \\ && c_{1}=\frac{\text{csch}\left( \sqrt{e\tau} \right)\left( g^{\prime}(-1)-g^{\prime}(1)\right)}{2\sqrt{e\tau}},\\ && c_{2}=-\frac{g(-1)-g(1)+g^{\prime}(-1)+g^{\prime}(1)}{2\sqrt{e\tau}\coth(\sqrt{e\tau})-2\sinh(\sqrt{e\tau})},\\ && c_{3}=\frac{\sqrt{e\tau}\coth(\sqrt{e\tau})(g(-1)-g(1))+\sinh(\sqrt{e\tau})g^{\prime}(-1) +g^{\prime}(1)}{2\sqrt{e\tau}\coth(\sqrt{e\tau})-2\sinh(\sqrt{e\tau})}, \\ && c_{4}=\frac{-\sqrt{e\tau}(g(-1)+g(1))+\coth(\sqrt{e\tau})\left( -g^{\prime}(-1)+g^{\prime}(1)\right)}{2\sqrt{e\tau} }, \\ && c_{5}=\frac{4 i a_{1} L_{2}{~}^{3} \left( 45 \sqrt{e\tau} \cosh \left( \sqrt{e\tau}\right)+(-45+(-15+e\tau )e \tau ) \sinh \left( \sqrt{e\tau} \right)\right)}{45 \left( 1+L_{2}\right){~}^{3} (e\tau )^{2} \ln \left( 1 + 2 L_{2}\right) \left( \sqrt{e\tau} \cosh \left( \sqrt{e\tau} \right)- \sinh \left( \sqrt{e\tau} \right)\right)}, \\ && c_{6}=\frac{i a_{1} L_{2}}{360 \left( 1+L_{2}\right){~}^{4} (e\tau )^{5/2} \left( \sqrt{e\tau} \cosh \left( \sqrt{e\tau} \right)- \sinh \left( \sqrt{e\tau} \right)\right)}(360 \left( e\tau + 4 L_{2} e\tau + 6 L_{2}{~}^{2} (1+e\tau )\right)\cosh(\sqrt{e\tau} )+\sqrt{e\tau} \\ && \left( -720 L_{2} \left( 1 + 4 L_{2}\right)-30 \left( 6+L_{2}\left( 20 + 23 L_{2}\right)\right) e\tau +\left( 15 + 46 L_{2} \left( 1+L_{2}\right)\right) (e\tau )^{2}\right)\text{} \sinh \left( \sqrt{e\tau} \right)), \\ \end{array} $$
$$\begin{array}{@{}rcl@{}} && c_{7}=\frac{\text{Sech}(\sqrt{e\tau})(\tau(2D-k(-1)-k(1))+ 4 e c_{20})}{2e\tau}, \\ && c_{8}= 1/2\text{csch}(\sqrt{e\tau})(k(-1)-k(1)), \\ && c_{9}=\frac{1}{2} (n(-1)-n(1)), \\ && c_{10}=\frac{1}{2} (-n(-1)-n(1)), \\ && c_{11}=\frac{L_{2} \left( a (2{} -2 L_{2} (2 (L_{2}-2) L_{2}+ 3)){}-(1{}-2 L_{2})^{2} (w(-1){}-w(1))\right)}{(1-2 L)^{2} \log (1-2 L_{2})}, \\ && c_{12}=\frac{1}{2} a (L_{2}-2)-w(1). \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abo-Elkhair, R.E., Mekheimer, K.S. & Zaher, A.Z. Electro-Magnetohydrodynamic Oscillatory Flow of a Dielectric Fluid Through a Porous Medium with Heat Transfer: Brinkman Model. BioNanoSci. 8, 596–608 (2018). https://doi.org/10.1007/s12668-018-0515-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0515-6

Keywords

Navigation