Skip to main content

Advertisement

Log in

Green Synthesis of Silver Nanoparticles Using Nostoc linckia and its Antimicrobial Activity: a Novel Biological Approach

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The biosynthesis of nanoparticles by microorganism is considered a green, non-toxic, and environment-friendly technology. The present study reported for the first time, a rapid and green method for synthesis of silver nanoparticles (AgNPs) using cyanobacteria Nostoc linckia. UV-Vis spectrophotometer, X-ray diffraction (XRD), FT-IR, transmission electron microscopy (TEM), and energy dispersive X-ray (EDX) spectroscopy were used to confirm the formation of silver nanoparticles. The formation and stability of the reduced AgNPs in the colloidal solution were monitored by UV-Vis spectrophotometer analysis. The UV-Vis spectrum revealed a characteristic surface plasmon resonance (SPR) peak at 435 nm, which corresponds to the absorption band of silver nanoparticles. A shift in the absorption bands in FT-IR after the formation of nanoparticles confirmed that the microorganism extract acted not only as reducing agents but also as capping agents to stabilize the formed nanoparticles. X-ray diffraction pattern revealed the crystalline nature of the synthesized nanoparticles. Transmission electron microscope showed spherical shaped nanoparticles. The silver nanoparticles obtained were in the range of 5–60 nm as obtained from TEM. Selected area electron diffraction (SAED) confirmed the formation of metallic Ag. The presence of elemental silver was confirmed by EDX-ray spectroscopy analysis, which showed the peak in silver region at approximately 3 KeV. The AgNPs obtained showed highly potent antibacterial activities toward four different pathogenic bacteria, such as Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus susp. aureus, and two tested fungal strains (Candida albicans and Aspergillus niger).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Koo, O. M., Rubinstein, I., & Onyuksel, H. (2005). Role of nanotechnology in targeted drug delivery and imaging: a concise review. Nanomedicine, 1, 193–212.

    Article  Google Scholar 

  2. Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–641.

    Article  Google Scholar 

  3. Willner, I., Baron, R., & Willner, B. (2006). Growing metal nanoparticles by enzymes. Advanced Materials, 18, 1109–1120.

    Article  Google Scholar 

  4. Rajan, R., Chandran, K., Harper, S. L., Yun, S. I., & Kalaichelvan, P. T. (2015). Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Industrial Crops and Products, 70, 356–373.

    Article  Google Scholar 

  5. Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.

    Article  Google Scholar 

  6. Chandran, S. P., Chaudhary, M., Pasricha, R., Ahmad, A., & Sastry, M. (2006). Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnology Progress, 22, 577–583.

    Article  Google Scholar 

  7. Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31, 346–356.

    Article  Google Scholar 

  8. Shaligram, N. S., Bule, M., Bhambure, R., Singhal, R. S., Singh, S. K., Szakacs, G., & Pandey, A. (2009). Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochemistry, 44, 939–943.

    Article  Google Scholar 

  9. Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids and Surfaces. B, Biointerfaces, 65, 150–153.

    Article  Google Scholar 

  10. Shahverdi, A. R., Minaeian, S., Shahverdi, H. R., Jamalifar, H., & Nohi, A. A. (2007). Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochemistry, 42, 919–923.

    Article  Google Scholar 

  11. Zhang, X., Yan, S., Tyagi, R. D., & Surampalli, R. Y. (2011). Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 82, 489–494.

    Article  Google Scholar 

  12. Hulkoti, N. I., & Taranath, T. C. (2014). Biosynthesis of nanoparticles using microbes—a review. Colloids and Surfaces B: Biointerfaces, 121, 474–483.

    Article  Google Scholar 

  13. Bhattacharya, D., & Gupta, R. K. (2005). Nanotechnology and potential of microorganisms. Critical Reviews in Biotechnology, 25, 199–204.

    Article  Google Scholar 

  14. Priyadarshini, S., Gopinath, V., Priyadharsshini, N. M., Ali, D. M., & Velusamy, P. (2013). Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application. Colloids and Surfaces B: Biointerfaces, 102, 232–237.

    Article  Google Scholar 

  15. Pantidos, N., & Horsfal, L. E. (2014). Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. Journal of Nanoscience and Nanotechnology., 5, 233–242.

    Google Scholar 

  16. Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 62, 4411–4413.

    Article  Google Scholar 

  17. Lin, W. S., Lok, C. N., & Che, C. M. (2014). Biosynthesis of silver nanoparticles from silver (I) reduction by the periplasmic nitrate reductase c-type cytochrome subunit NapC in a silver-resistant E. coli. Chemical Science, 5, 3144–3150.

    Article  Google Scholar 

  18. Stanier, R. Y., Kunisawa, R., Mandel, M., & Cohen-Bazire, C. (1971). Purification and properties of uni-cellular blue green algae. Bacteriological Reviews, 35, 171–205.

    Article  Google Scholar 

  19. Kaushik, P., & Goyal, P. (2008). In-vitro evaluation of Daturainnoxia (thorn apple) for potential antibacterial activity. Indian Journal of Microbiology., 48, 353–357.

    Article  Google Scholar 

  20. Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339, 2693–2700.

    Article  Google Scholar 

  21. CLSI. (2015). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically.

  22. Thosar, N., Basak, S., Bahadure, R. N., & Rajurkar, M. (2013). Antimicrobial efficacy of five essential oils against oral pathogens: an in vitro study. European Journal of Dental Education, 7, S71–S77.

    Google Scholar 

  23. Kajaria, D. K., Gangwar, M., Kumar, D., Sharma, A. K., Tilak, R., Nath, G., Tripathi, Y. B., Tripathi, J. S., & Tiwari, S. K. (2012). Evaluation of antimicrobial activity and bronchodialator effect of a polyherbal drug-Shrishadi. Asian Pacific Journal of Tropical Biomedicine., 2, 905–909.

    Article  Google Scholar 

  24. Khan, M., Khan, M., Adil, S. F., Tahir, M. N., Tremel, W., Alkhathlan, H. Z., AlWarthan, A., & Siddiqui, M. R. H. (2013). Green synthesis of silver nanoparticles mediated by Pulicaria glutinosa extract. International Journal of Nanomedicine, 8, 1507–1516.

    Google Scholar 

  25. Sanghi, R., & Verma, P. (2009). Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresource Technology, 100, 501–504.

    Article  Google Scholar 

  26. Raffin, M., Hussain, F., Bhatti, T. M., Akhter, J. I., Hameed, A., & Hasan, M. M. (2008). Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. Journal of Materials Science and Technology, 24, 192.

    Google Scholar 

  27. Galdiero, S., Falanga, A., Vitiello, M., Cantisani, M., Marra, V., & Galdiero, M. (2011). Silver nanoparticles as potential antiviral agents. Molecules, 16, 8894–8918.

    Article  Google Scholar 

Download references

Funding

This study is funded by SERB, New Delhi (Grant No. SB/FT/CS-103/2013 and SB/EMEQ-076/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Lalthazuala Rokhum.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanlalveni, C., Rajkumari, K., Biswas, A. et al. Green Synthesis of Silver Nanoparticles Using Nostoc linckia and its Antimicrobial Activity: a Novel Biological Approach. BioNanoSci. 8, 624–631 (2018). https://doi.org/10.1007/s12668-018-0520-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-018-0520-9

Keywords

Navigation