Skip to main content

Advertisement

Log in

Biomedical Applications of Biogenic Zinc Oxide Nanoparticles Manufactured from Leaf Extracts of Calotropis gigantea (L.) Dryand.

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Green synthesis has made us an exciting approach in the field of nanotechnology. Biogenic zinc oxide nanoparticles (ZnONPs) were synthesized using leaf extracts of Calotropis gigantea (L.) Dryand. in the presence of zinc nitrate hexahydrate as a precursor molecule. ZnONPs were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD) patterns, and Fourier transform infrared spectroscopy (FT-IR) analysis and further in understanding the biomedical applications of antimicrobial (minimum inhibitory concentration method) and anticancer (apoptosis assay) activities, cytology (flow cytometry) and cytotoxicity (% cell viability), deoxyribonucleic acid (DNA) fragmentation (reverse transcriptase polymerase chain reaction (RT-PCR)), and caspase assay (polymerase chain reactions (PCR)) studies. The morphology of nanoparticles was determined by SEM analysis. XRD pattern showed the value of highest peak of 36.15° with 101 plane region among the ten recorded peaks. FTIR spectrum indicated stretching vibration of O-H at 3441.77 cm−1. The antibacterial activity of biogenic ZnO nanoparticles was studied against human pathogenic bacteria—Campylobacter jejuni ATCC 29428 and Neisseria gonorrhoeae ATCC 49226—and showed 50% zone of inhibition. A cytotoxic study against the breast cancer cell lines of MDAMB-231 revealed that the ZnONPs as a good anticancer agent could be sliced by all existing and metabolically active cells. Biosynthesized ZnONPs potentially alter the apoptotic protein expression and trigger apoptosis in the MDAMB-231 cells. Therefore, the biogenic ZnO nanoparticles would be useful and have the great potential in the field of biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.  1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Rouhi, J., Mahmud, S., Naderi, N., Ooi, C. R., & Mahmood, M. R. (2013). Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Research Letters, 8, 364.

    Google Scholar 

  2. Radzimska, A. K., & Jesionowski, T. (2014). Zinc oxide- from synthesis to application: A review. Materials, 7, 2833–2881.

    Google Scholar 

  3. Padmavathy, N., & Vijayaraghavan, R. (2008). Enhanced bioactivity of ZnO nanoparticles—An antimicrobial study. Science and Technology of Advanced Materials, 9, 1–7.

    Google Scholar 

  4. Wang, X., Ding, Y., Summers, C. J., & Wang, Z. L. (2004). Large-scale synthesis of six-nanometer-wide ZnO nanobelts. Journal of Physical Chemistry B, 108, 8773–8777.

    Google Scholar 

  5. Jayaseelana, C., Ramkumar, R., Rahumana, A. A., & Perumal, P. (2014). Green synthesis of gold nanoparticles using seed aqueous extract of Abelmoschus esculentus and its antifungal activity. Industrial Crops and Products, 45, 423–429.

    Google Scholar 

  6. Rajoriya, P., Misra, P., Shukla, P. K., & Ramteke, P. W. (2016). Light-regulatory effect on the phytosynthesis of silver nanoparticles using aqueous extract of garlic (Allium sativum) and onion (Allium cepa) bulb. Current Science, 111, 1364–1368.

    Google Scholar 

  7. Krishnaveni, B., & Priya, P. (2014). Green synthesis and antimicrobial activity of silver nanoparticles from Calotropis gigantea, Catharanthus roseus, chitin and chitosan. International Journal of Chemical Studies, 1(6), 10–20.

    Google Scholar 

  8. Maruthupandy, M., Zuo, Y., Chen, J., Song, J., Niu, H., Mao, C., Zhang, S., & Shen, Y. (2017). Synthesis of metal oxide nanoparticles (CuO and ZnONPs) via biological template and their optical sensor applications. Applied Surface Science, 397, 167–174.

    Google Scholar 

  9. Nagajyothi, P. C., Muthuraman, P., Sreekanth, T. M. V., Kim, D. H., & Shim, J. (2016). Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arabian Journal of Chemistry, 10, 215–225.

    Google Scholar 

  10. Velayutham, K., Abdul, A. R., Govindasamy, R., Thirunavukkarasu, S., Marimuthu, S., Chidambaram, J., et al. (2012). Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis. Parasitology Research, 111, 2329–2337.

    Google Scholar 

  11. Manokari, M., Ravindran, C. P., & Shekhawat, M. S. (2016). Biosynthesis and characterization of zinc oxide nanoparticles using plant extracts of Peperomia pellucida L. and Celosia argentea L. International Journal of Botany Studies, 1(2), 32–37.

    Google Scholar 

  12. Jain, D., Rathore, K. S., Jain, R., Singh, H., Kachhwaha, S., & Kothari, S. L. (2013). Phytofabrication of iron oxide nanoparticles using Calotropis gigantea leaves. American Scientific Publishers, 1(4), 318–321.

    Google Scholar 

  13. Kolekar, T. V., Bandgar, S. S., Shirguppikar, S. S., & Ganachari, V. S. (2013). Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Archives of Applied Science Research, 5(6), 20–28.

    Google Scholar 

  14. Mahanty, A., Mishra, S., Bosu, R., Maurya, U. K., Netam, S. P., & Sarkar, B. (2013). Phytoextracts-synthesized silver nanoparticles inhibit bacterial fish pathogen Aeromonas hydrophila. Indian Journal of Medical Microbiology, 53(4), 438–446.

    Google Scholar 

  15. Gunalan, S., Sivaraj, R., & Rajendran, V. (2012). Green synthesized ZnO nanoparticles against bacterial and fungal pathogens. Progress in Natural Science: Materials International, 22(6), 693–700.

    Google Scholar 

  16. Ramesh, P., Rajendran, A., & Meenakshisundaram, M. (2014). Green synthesis of zinc oxide nanoparticles using flower extract Cassia auriculata. Journal of Nanoscience and Nanotechnology, 1(1), 41–45.

    Google Scholar 

  17. Alavi, M., & Nokhodchi, A. (2020). An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydrate Polymers, 227, 115349.

    Google Scholar 

  18. Ansari, S. H., & Ali, M. (2001). Norditerpenic ester and pentacyclic triterpenoids from root bark of Calotropis procera (Ait) R. Br. Die Pharmazie, 56, 175–177.

    Google Scholar 

  19. Parhira, S., Zhu, G. Y., Jiang, R. W., Liu, L., Bai, L. P., & Jiang, Z. H. (2014). 2′-Epi-uscharin from the latex of Calotropis gigantea with HIF-1 inhibitory activity. Scientific Reports, 4, 4748.

    Google Scholar 

  20. Singh, M. K., Nagori, K., & Tripathi, D. K. (2010). Potential analgesic and anti-pyretic herbal drugs: A comparative review of marketed products. International Journal of Phytomedicine, 2(3), 197–209.

    Google Scholar 

  21. Verma, S., Srivastava, M., Shahjahan, Varma, R. K., & Yadav, P. (2017). Calotropis gigantea (L.) root: Pharmacognostic evaluation. International Journal of Current Pharmaceutical Research, 9(1), 37–48.

    Google Scholar 

  22. Kumar, P. S., Suresh, E., & Kalavathy, S. (2013). Review on a potential herb Calotropis gigantea (L.) R. Br. Scholars Academic Journal of Pharmacy, 2, 135–143.

    Google Scholar 

  23. Choedon, T., Mathan, G., Arya, S., Kumar, V. L., & Kumar, V. (2006). Anticancer and cytotoxic properties of the latex of Calotropis procera in a transgenic mouse model of hepatocellular carcinoma. World Journal of Gastroenterology, 12(16), 2517–2522.

    Google Scholar 

  24. Bhosale, T. T., Shinde, H. M., Gavade, N. L., Babar, S. B., Gawade, V. V., Sabale, S., et al. (2018). Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of Calotropis gigantea for photocatalytic applications. Journal of Materials Science: Materials in Electronics, 29, 6826–6834.

    Google Scholar 

  25. Rajesh, R., Gowda, R. C. D., Nataraju, A., Dhananjaya, B. L., Kemparaju, K., & Vishwanath, B. S. (2005). Procoagulant activity of Calotropis gigantea latex associated with fibrin(ogen)olytic activity. Toxicon, 46, 184–192.

    Google Scholar 

  26. Argal, A., & Pathak, A. K. (2005). Antidiarrhoeal activity of Calotropis gigantea flowers. Indian Journal of Natural Products, 21(3), 42–44.

    Google Scholar 

  27. Argal, A., & Pathak, A. K. (2005). Antidiarrhoeal activity of Calotropis gigantea roots. Indian Drugs, 42(12), 826–828.

    Google Scholar 

  28. Argal, A., & Pathak, A. K. (2006). CNS activity of Calotropis gigantea roots. Journal of Ethnopharmacology, 6, 142–145.

    Google Scholar 

  29. Kumar, G., Karthik, L., & Rao, K. V. B. (2010). In vitro anti-Candida activity of Calotropis gigantea against clinical isolates of Candida. Journal of Pharmacy Research, 3, 539–542.

    Google Scholar 

  30. Wang, Z., Wang, M., Mei, W., Han, Z., & Dai, H. (2008). A new cytotoxic pregnanone from Calotropis gigantea. Molecules, 13, 3033–3039.

    Google Scholar 

  31. Seeka, C., & Sutthivaiyakit, S. (2010). Cytotoxic cardenolides from the leaves of Calotropis gigantea. Chemical and Pharmaceutical Bulletin, 5, 725–728.

    Google Scholar 

  32. Nguyen, K. D. H., Dang, P., Nguyen, H. X., Nguyen, M. T. T., Awale, S., & Nguyen, N. T. (2017). Phytochemical and cytotoxic studies on the leaves of Calotropis gigantea. Bioorganic and Medicinal Chemistry Letters, 27, 2902–2906.

    Google Scholar 

  33. Chitme, H. R., Chandra, R., & Kaushik, S. (2005). Evaluation of antipyretic activity of Calotropis gigantea (Asclepiadaceae) in experimental animals. Phytotherapy Research, 19, 454–456.

    Google Scholar 

  34. Nalwaya, N., Pokharna, G., Deb, L., & Jain, N. K. (2009). Wound healing activity of latex of Calotropis gigantea. International Journal of Pharmacy and Pharmaceutical Sciences, 1(1), 176–181.

    Google Scholar 

  35. Saratha, V., Subramanian, S., & Sivakumar, S. (2009). Evaluation of wound healing potential of Calotropis gigantea latex studied on excision wounds in experimental animals. Medicinal Chemistry Research, 18(8), 936–947.

    Google Scholar 

  36. Bansavatar, C. S., Kurup, R., & Ansari, A. A. (2015). Antimicrobial properties of Ocimum sanctum and Calotropis gigantea leaves. British Microbiology Research Journal, 8(4), 532–539.

    Google Scholar 

  37. Kumar, G., Karthik, L., & Rao, K. V. B. (2011). A review on pharmacological and phytochemical profile of Calotropis gigantea Linn. Pharmacologyonline, 1, 1–8.

    Google Scholar 

  38. Banumathi, B., Vaseeharan, B., Ishwarya, R., Govindarajan, M., Alharbi, N. S., Kadaikunnan, S., et al. (2017). Toxicity of herbal extracts used in ethno-veterinary medicine and green-encapsulated ZnO nanoparticles against Aedes aegypti and microbial pathogens. Parasitology Research, 116, 1637–1651.

    Google Scholar 

  39. Marimuthu, S., Rahuman, A. A., Jayaseelan, C., Kirthi, A. V., Santhoshkumar, T., Velayutham, K., et al. (2013). Acaricidal activity of synthesized titanium dioxide nanoparticles using Calotropis gigantea against Rhipicephalus microplus and Haemaphysalis bispinosa. Asian Pacific Journal of Tropical Medicine, 6(9), 682–688.

    Google Scholar 

  40. Tenpe, C. R., Upaganlawar, A. B., Dongre, P. A., & Yeole, P. G. (2007). Screening of methanolic extract of Calotropis gigantea leaves for hepatoprotective activity. Indian Drugs, 44(11), 874–875.

    Google Scholar 

  41. Argal, A., & Dwivedi, A. (2010). Evaluation of hepatoprotective activity of Calotropis gigantea R.Br. Flowers. Ethnobotanical leaflets, 14, 427–434.

    Google Scholar 

  42. Usmani, S., & Kushwaha, P. (2010). Hepatoprotective activity of extracts of leaves of Calotropis gigantea. Asian Journal of Pharmaceutical and Clinical Research, 3(3), 195–196.

    Google Scholar 

  43. Patel, H. V., Patel, J. D., & Patel, B. (2014). Comparative efficacy of phytochemical analysis and antioxidant activity of methanolic extract of Calotropis gigantea and Calotropis procera. International Journal of Biological & Pharmaceutical Research, 5(2), 107–113.

    Google Scholar 

  44. Khang, N. H. D., Phu, D. H., & Nhan, N. T. (2017). Chemical constituents of the leaves of Calotropis gigantea (Linn.), Asclepiadaceae. Vietnam Journal of Chemistry, 55(3e), 76–79.

    Google Scholar 

  45. Sachin, S., Rani, A., Amresh, N., Rajadurai, M., & Sathyamurthy, B. (2018). Phytochemical studies on the methanolic extract of Calotropis gigantea leaves. Indo American Journal of Pharmaceutical Sciences, 05(07), 6248–6260.

    Google Scholar 

  46. Verma, V. N. (2014). The chemical study of Calotropis. International Letters of Chemistry, Physics and Astronomy, 20, 74–90.

    Google Scholar 

  47. Venkatesha, M. G. (2006). Plight of insects dependent on the milkweed plant in Bangalore region. Current Science, 91(3), 263–264.

    Google Scholar 

  48. McIlwain Verastegui, M. A., Sanchez, C. A., Heredia, N. L., Santos, G., & A.J. (1996). Antimicrobial activity of extracts of three major plants from the Chihuahuan Desert. Journal of Ethnopharmacology, 52, 175–177.

    Google Scholar 

  49. Salem, W., Leitner, D. R., Zingl, F. G., Schratter, G., Prassl, R., Goessler, W., et al. (2015). Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. International Journal of Medical Microbiology, 305(1), 85–95.

    Google Scholar 

  50. Vidya, C., Hiremath, S., Chandraprabha, M. N., Antonyraj, M. A. L., Gopal, I. V., Jaina, A., & Bansala, K. (2013). Green synthesis of ZnO nanoparticles by Calotropis gigantea. International Journal of Current Engineering Technology, 1, 118–120.

    Google Scholar 

  51. Chanda, S. (2013). Microbial pathogens and strategies for combating them. In A. Méndez-Vilas (Ed.), Science, technology and education (pp. 1314–1323). Spain: Formatex.

    Google Scholar 

  52. Mittal, A. K., Bhaumik, J., Kumar, S., & Banerjee, U. C. (2014). Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. Journal of Colloid and Interface Science, 415, 39–47.

    Google Scholar 

  53. Mohammadlou, M., Maghsoudi, H., & Jafarizadeh-Malmiri, H. (2016). A review on green silver nanoparticles based on plants: Synthesis, potential applications and eco-friendly approach. International Food Research Journal, 23(2), 446–463.

    Google Scholar 

  54. Al-Jaroudi, S. S., Ul-Hamid, A., Mohammed, A.-R. I., & Saner, S. (2007). Use of X-ray powder diffraction for quantitative analysis of carbonate rock reservoir samples. Powder Technology, 175(3), 115–121.

    Google Scholar 

  55. Philip, D. (2010). Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica E: Low-dimensional Systems and Nanostructures, 42(5), 1417–1424.

    Google Scholar 

  56. Meng, Y., Yao, C., Xue, S., & Yang, H. (2014). Application of Fourier transform infrared (FT-IR) spectroscopy in determination of microalgal compositions. Bioresource Technology, 151, 347–354.

    Google Scholar 

  57. Dobrucka, R., & Dugaszewska, J. (2016). Biosynthesis and antibacterial activity of ZnO nanoparticles using Trifolium pratense flower extract. Saudi Journal of Biological Sciences, 23, 517–523.

    Google Scholar 

  58. Raj, A., Lawrence, R. S., Jalees, M., & Lawrence, K. (2015). Anti-bacterial activity of zinc oxide nanoparticles prepared from Brassica oleracea leaves extract. International Journal of Advanced Research, 3(11), 322–328.

    Google Scholar 

  59. Jackman, J., & O’Connor, P. M. (1998). Methods for synchronizing cells at specific stages of the cell cycle. Current Protocols in Cell Biology, 8(3), 1–8.3.20.

    Google Scholar 

  60. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63.

    Google Scholar 

  61. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89, 271–277.

    Google Scholar 

  62. Koopman, G., Reutelingsperger, C. P. M., Kuijten, G. A. M., Keehnen, R. M. J., Pals, S. T., & Oers, M. H. J. V. (1994). Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood Journal, 84(5), 1415–1420.

    Google Scholar 

  63. Martin, S. J., Reutelingsperger, C. E. M., McGahon, A. J., Rader, J. A., Schie, R. C. A. A. V., Drake, M. W., et al. (1995). Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. Journal of Experimental Medicine, 182, 1545–1556.

    Google Scholar 

  64. McIlwain, D. R., Berger, T., & Mak, T. W. (2013). Caspase functions in cell death and disease. Cold Spring Harbor Perspectives in Biology, 5, a008656.

    Google Scholar 

  65. Salam, H. A., Sivaraj, R., & Venckatesh, R. (2014). Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var. Purpurascens Benth.-Lamiaceae leaf extract. Materials Letters, 131, 16–18.

    Google Scholar 

  66. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H. C., & Kahru, A. (2008). Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus. Chemosphere, 71(7), 1308–1316.

    Google Scholar 

  67. Chaudhuri, S. K., & Malodia, L. (2017). Biosynthesis of zinc oxide nanoparticles using leaf extract of Calotropis gigantea: Characterization and its evaluation on tree seedling growth in nursery stage. Applied Nanoscience, 7, 501–512.

    Google Scholar 

  68. Azizi, S., Azizi, M. B., Ahmad, F., Namvar, & Mohamad, R. (2014). Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Materials Letters, 116, 275–277.

    Google Scholar 

  69. Singh, K., & Mishra, A. (2013). Water soluble chitosan nanoparticle the effective delivery of lipophilic drugs: A review. International Journal of Applied Pharmaceutics, 5(3), 1–6.

    Google Scholar 

  70. Awwad, A. M., Albiss, B., & Ahmad, A. L. (2014). Green synthesis, characterization and optical properties of zinc oxide nanosheets using Olea europaea leaf extract. Advanced Materials Letters, 5(9), 520–524.

    Google Scholar 

  71. Jaber, B., & Laanab, L. (2014). One step synthesis of ZnO nanoparticles in free organic medium: Structural and optical characterizations. Materials Science in Semiconductor Processing, 27, 446–451.

    Google Scholar 

  72. Liu, Y., He, L., Mustapha, A., Li, H., Hu, Z. Q., & Lin, M. (2009). Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. Journal of Applied Microbiology, 107, 1193–1201.

    Google Scholar 

  73. Brayner, R., Ferrari-Iliou, R., Brivois, N., Djediat, S., Benedetti, M. F., & Fie’vet, F. (2006). Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Letters, 6(4), 866–870.

    Google Scholar 

  74. Alavi, M., Karimi, N., & Salimikia, I. (2019). Phytosynthesis of zinc oxide nanoparticles and its antibacterial, antiquorum sensing, antimotility, and antioxidant capacities against multidrug resistant bacteria. Journal of Industrial and Engineering Chemistry, 72, 457–473.

    Google Scholar 

  75. Alavi, M., & Rai, M. (2019). Recent advances in antibacterial applications of metal nanoparticles (MNPs) and metal nanocomposites (MNCs) against multidrug-resistant (MDR) bacteria. Expert Review of Anti-Infective Therapy, 17(6), 419–428.

    Google Scholar 

  76. Pattnaik, P. K., Kar, D., Chhatoi, H., Shahbazi, S., Ghosh, G., & Kuanar, A. (2017). Chemometric profile & antimicrobial activities of leaf extract of Calotropis procera and Calotropis gigantea. Natural Product Research, 31(16), 1954–1957.

    Google Scholar 

  77. Stoimenov, P. K., Klinger, R. L., Marchin, L. G., & Klabunde, K. J. (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir, 18, 6679–6686.

    Google Scholar 

  78. Fu, G., Vary, P. S., & Lin, C. T. (2005). Anatase TiO2 nanocomposites for antimicrobial coatings. The Journal of Physical Chemistry B, 109, 8889–8898.

    Google Scholar 

  79. Cheah, Y. H., Nordin, F. J., Tee, T. T., Azimahtol, H. L., Abdullah, N. R., & Ismail, Z. (2008). Antiproliferative property and apoptotic effect of xanthorrhizol on MDA-MB-231 breast cancer cells. Anticancer Research, 28(6A), 3677–3689.

    Google Scholar 

  80. Arivazhagan, R., Jagadeesan, S., Young-Jae, C., Jong-Hwan, L., & Choi, K. H. (2017). Synthesis and evaluation of the cytotoxic and anti-proliferative properties of ZnO quantum dots against MCF-7 and MDA-MB-231 human breast cancer cells. Materials Science and Engineering C, 81, 551–560.

    Google Scholar 

  81. Damodaran, B., Nagaraja, P., Jain, V., Wimalasiri, M. P. M. V., Sankolli, G. M., Kumar, G. V., & Prabhu, V. (2019). Phytochemical screening and evaluation of cytotoxic activity of Calotropis gigantea leaf extract on MCF7, HeLa, and A549 cancer cell lines. Journal of Natural Science, Biology and Medicine, 10(2), 131–138.

    Google Scholar 

  82. Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and Microbial Technology, 117, 91–95.

    Google Scholar 

  83. Bisht, G., & Rayamajhi, S. (2016). ZnO nanoparticles: A promising anticancer agent. Nanobiomedicine, 3, 9.

    Google Scholar 

  84. Kappler, J. W., Skidmore, B., White, J., & Marrack, P. (1981). Antigen-inducible, H-2-restricted, interleukin-2-producing T cell hybridomas. Lack of independent antigen and H-2 recognition. Journal of Experimental Medicine, 153, 1198–1124.

    Google Scholar 

  85. Vidhu, V. K., & Philip, D. (2015). Biogenic synthesis of SnO2 nanoparticles: Evaluation of antibacterial and antioxidant activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 134, 372–379.

    Google Scholar 

  86. Thurnherr, T. B., Xiao, L., Diener, L., Arslan, O., Hirsch, C., Maeder-Althaus, X., et al. (2013). In vitro mechanistic study towards a better understanding of ZnO nanoparticles toxicity. Nanotoxicology, 7, 402–416.

    Google Scholar 

  87. Franco, J. L., Posser, T., & Dunkley, P. R. (2009). Methyl mercury neurotoxicity is associated with inhibition of the antioxidant enzyme glutathione peroxidase. Free Radical Biology and Medicine, 7, 449–457.

    Google Scholar 

  88. Sriram, M. I., Kanth, S. B., Kalishwaralal, K., & Gurunathan, S. (2010). Antitumor activity of silver nanoparticles in Dalton’s lymphoma ascites tumor model. International Journal of Nanomedicine, 5, 753–762.

    Google Scholar 

  89. Javed, M., Saquib, Q., Azam, A., & Naqvi, S. A. H. (2009). Zinc oxide nanoparticles-induced DNA damage in human lymphocytes. International Journal of Nanoparticles, 2, 402–415.

    Google Scholar 

  90. Markovic, Z. M., Harhaji-Trajkovic, L. M., Todorovic-Markovic, B. M., Kepic, D. P., Arsikin, K. M., Jovanovic, S. P., et al. (2011). In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials, 32, 1121–1129.

    Google Scholar 

  91. Paulkumar, K., Gnanajobitha, G., Vanaja, M., Rajeshkumar, S., Malarkod, C., & Pandian, K. (2014). Piper nigrum leaf and stem assisted green synthesis of silver nanoparticles and evaluation of its antibacterial activity against agricultural plant pathogens. The Scientific World Journal, 829894, 1-9.

  92. Liu, Y. J., Joshua, D. E., Williams, G. T., Smith, C. A., Gordon, J., & Mac-Lennan, K. M. (1989). Mechanism of antigen-driven selection in germinal centres. Nature, 342, 929.

    Google Scholar 

  93. Allan, R. T., Hunter III, W. J., & Agrawal, D. K. (1997). Morphological and biochemical characterization and analysis of apoptosis. Journal of Pharmacological and Toxicological Methods, 37, 215.

    Google Scholar 

  94. Janicke, R. U., Sprengart, M. N., Wati, M. R., & Porter, A. G. (1998). Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. Journal of Biological Chemistry, 273, 9357.

    Google Scholar 

  95. Asharani, P. V., Hande, M. P., & Valiyaveettil, S. (2009). Anti-proliferative activity of silver nanoparticles. BMC Cell Biology, 10, 65.

    Google Scholar 

  96. Moaddad, S., Ahari, H., Shahbazzadeh, D., Motallebi, A. A., Anvar, A. A., Rahman-Nya, J., & Shokrgozar, M. R. (2011). Toxicity study of nanosilver (Nanocid1) on osteoblast cancer cell line. International Nano Letters, 1, 11.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. S. Yogesha, Director and Dr. Ananda, Technical Staff of the Skanda Life Sciences Private Limited, Sri Shaila Bramara Complex, Srigandhada Kaval, Bengaluru 560091, for the conduct of desired experiments and providing the laboratory facilities for this work.

Author information

Authors and Affiliations

Authors

Contributions

SR designed the experiments; AS, SS, and SK performed the experiments. AS prepared the draft of manuscript, and SR analyzed the draft and edited the paper. All authors read and provided helpful discussions for the manuscript.

Corresponding author

Correspondence to S. Rajashekara.

Ethics declarations

We furthermore declare that there is no ethical issue in our experiments.

Conflict of Interest

The authors declare that they have no conflict of interests.

Ethical Approval

We furthermore declare that there is no ethical issue in our experiments.

Research Involving Humans and Animals Statement

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajashekara, S., Shrivastava, A., Sumhitha, S. et al. Biomedical Applications of Biogenic Zinc Oxide Nanoparticles Manufactured from Leaf Extracts of Calotropis gigantea (L.) Dryand.. BioNanoSci. 10, 654–671 (2020). https://doi.org/10.1007/s12668-020-00746-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-020-00746-w

Keywords

Navigation