Skip to main content
Log in

The Complexity of Microbial Metal Nanoparticle Synthesis: A Study of Candida parapsilosis ATCC 7330 mediated Gold Nanoparticles Formation

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Understanding the biosynthetic mechanism of gold nanoparticle formation is the key to controlling the size, dispersity, and morphology of the nanoparticles. Reduction of gold (III) to gold (0) in cell-free extracts of Candida parapsilosis ATCC 7330 is not only enzymatic, as confirmed by experiments with heat denatured extracts. In addition to proteins, cellular reducing equivalents also contribute to the formation of gold nanoparticles in a concentration-dependent manner. Characterization of the bio-synthesized gold nanoparticles using X-ray photoelectron spectroscopy and elemental analysis revealed that nanoparticles are stabilized by proteins. The importance of protein three-dimensional structure in producing stable gold nanoparticles is also addressed. Making free thiol groups (–SH) unavailable by derivatizing them in protein extracts resulted in monodisperse gold nanoparticles implying that free –SH increase aggregation and emphasize this as a possible strategy to produce monodisperse gold nanoparticles in biological extracts which is otherwise difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Duan, H., Wang, D., & Li, Y. (2015). Green chemistry for nanoparticle synthesis. Chemical Society Reviews, 44(16), 5778–5792.

    Article  Google Scholar 

  2. Dahl, J. A., Maddux, B. L., & Hutchison, J. E. (2007). Toward greener nanosynthesis. Chemical Reviews, 107(6), 2228–2269.

    Article  Google Scholar 

  3. Maliszewska, I. (2011). Microbial synthesis of metal nanoparticles. Metal Nanoparticles in Microbiology (pp. 153–175). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  4. Korbekandi, H., Iravani, S., & Abbasi, S. (2009). Production of nanoparticles using organisms. Critical Reviews in Biotechnology, 29(4), 279–306.

  5. Anahid, S., Yaghmaei, S., & Ghobadinejad, Z. (2011). Heavy metal tolerance of fungi. Scientia Iranica, 18(3), 502–508.

    Article  Google Scholar 

  6. Yadav, A., Kon, K., Kratosova, G., Duran, N., Ingle, A. P., & Rai, M. (2015). Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research. Biotechnology Letters, 37(11), 2099–2120.

  7. Khandel, P., & Shahi, S. K. (2018). Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. Journal of Nanostructure in Chemistry, 8(4), 369–391.

    Article  Google Scholar 

  8. Castro, M. E., Cottet, L., & Castillo, A. (2014). Biosynthesis of gold nanoparticles by extracellular molecules produced by the phytopathogenic fungus Botrytis cinerea. Materials Letters, 115, 42–44.

    Article  Google Scholar 

  9. Pimprikar, P. S., Joshi, S. S., Kumar, A. R., Zinjarde, S. S., & Kulkarni, S. K. (2009). Influence of biomass and gold salt concentration on nanoparticle synthesis by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Colloids and Surfaces B: Biointerfaces, 74(1), 309–316.

    Article  Google Scholar 

  10. Arumugam, P., & Berchmans, S. (2011). Synthesis of gold nanoparticles: an ecofriendly approach using Hansenula anomala. ACS Applied Materials & Interfaces, 3(5), 1418–1425.

  11. Mishra, A., Tripathy, S. K., & Yun, S. I. (2011). Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. Journal of Nanoscience and Nanotechnology, 11(1), 243–248.

  12. Chauhan, A., Zubair, S., Tufail, S., Sherwani, A., Sajid, M., Raman, S. C., Azam, A., & Owais, M. (2011). Fungus-mediated biological synthesis of gold nanoparticles: potential in detection of liver cancer. International Journal of Nanomedicine, 6, 2305.

  13. Mishra, A., Tripathy, S. K., & Yun, S. I. (2012). Fungus mediated synthesis of gold nanoparticles and their conjugation with genomic DNA isolated from Escherichia coli and Staphylococcus aureus. Process Biochemistry, 47(5), 701–711.

    Article  Google Scholar 

  14. Kitching, M., Ramani, M., & Marsili, E. (2015). Fungal biosynthesis of gold nanoparticles: mechanism and scale up. Microbial Biotechnology, 8(6), 904–917.

  15. Das, S. K., Das, A. R., & Guha, A. K. (2009). Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir, 25(14), 8192–8199.

    Article  Google Scholar 

  16. Chadha, A., Venkataraman, S., Preetha, R., & Padhi, S. K. (2016). Candida parapsilosis: A versatile biocatalyst for organic oxidation-reduction reactions. Bioorganic Chemistry, 68, 187–213.

  17. Krishnan, S., Narayan, S., & Chadha, A. (2016). Whole resting cells vs. cell free extracts of Candida parapsilosis ATCC 7330 for the synthesis of gold nanoparticles. AMB Express, 6(1), 92.

    Article  Google Scholar 

  18. Lin, M. Y., & Yen, C. L. (1999). Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry, 47(4), 1460–1466.

  19. Grabar, K. C., Freeman, R. G., Hommer, M. B., & Natan, M. J. (1995). Preparation and characterization of Au colloid monolayers. Analytical Chemistry, 67(4), 735–743.

  20. Sedlak, J., & Lindsay, R. H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytical Biochemistry, 25, 192–205.

  21. Durán, N., Marcato, P. D., Durán, M., Yadav, A., Gade, A., & Rai, M. (2011). Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants. Applied Microbiology and Biotechnology, 90(5), 1609–1624.

  22. Singh, P., Kim, Y. J., Zhang, D., & Yang, D. C. (2016). Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 34(7), 588–599.

  23. Siddiqi, K. S., & Husen, A. (2016). Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Research Letters, 11(1), 98.

  24. Boroumand Moghaddam, A., Namvar, F., Moniri, M., Azizi, S., & Mohamad, R. (2015). Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules, 20(9), 16540–16565.

    Article  Google Scholar 

  25. Owaid, M. N., & Ibraheem, I. J. (2017). Mycosynthesis of nanoparticles using edible and medicinal mushrooms. European Journal of Nanomedicine, 9(1), 5–23.

    Article  Google Scholar 

  26. Das, S. K., Dickinson, C., Lafir, F., Brougham, D. F., & Marsili, E. (2012). Synthesis, characterization and catalytic activity of gold nanoparticles biosynthesized with Rhizopus oryzae protein extract. Green Chemistry, 14(5), 1322–1334.

    Article  Google Scholar 

  27. Oyaizu, M. (1986). Studies on products of browning reaction. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315.

  28. Harris, D. C. (2010). Quantitative chemical analysis, 8th edn (p. 103). W.H. New York: W.H. Freeman

  29. Yamada, E. A., & Sgarbieri, V. C. (2005). Yeast (Saccharomyces cerevisiae) protein concentrate: preparation, chemical composition, and nutritional and functional properties. Journal of Agricultural and Food Chemistry, 53(10), 3931–3936.

  30. Durán, M., Silveira, C. P., & Durán, N. (2015). Catalytic role of traditional enzymes for biosynthesis of biogenic metallic nanoparticles: a mini-review. IET Nanobiotechnology, 9(5), 314–323.

  31. Binupriya, A. R., Sathishkumar, M., Vijayaraghavan, K., & Yun, S. I. (2010). Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. Journal of Hazardous Materials, 177(1–3), 539–545.

  32. Pfeiffer, C., Rehbock, C., Hühn, D., Carrillo-Carrion, C., de Aberasturi, D. J., Merk, V., Barcikowski, S., & Parak, W. J. (2014). Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. Journal of the Royal Society Interface, 11(96), 20130931.

    Article  Google Scholar 

  33. Moore, T. L., Rodriguez-Lorenzo, L., Hirsch, V., Balog, S., Urban, D., Jud, C., Rothen-Rutishauser, B., Lattuada, M., & Petri-Fink, A. (2015). Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chemical Society Reviews, 44(17), 6287–6305.

    Article  Google Scholar 

  34. Li, J., Li, Q., Ma, X., Tian, B., Li, T., Yu, J., Dai, S., Weng, Y., & Hua, Y. (2016). Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. International Journal of Nanomedicine, 11, 5931.

  35. Xin, J. Y., Lin, K., Wang, Y., & Xia, C. G. (2014). Methanobactin-mediated synthesis of gold nanoparticles supported over Al2O3 toward an efficient catalyst for glucose oxidation. International Journal of Molecular Sciences, 15(12), 21603–21620.

  36. Naraginti, S., & Li, Y. (2017). Preliminary investigation of catalytic, antioxidant, anticancer and bactericidal activity of green synthesized silver and gold nanoparticles using Actinidia deliciosa. Journal of Photochemistry and Photobiology B: Biology, 170, 225–234.

    Article  Google Scholar 

  37. Sylvestre, J. P., Poulin, S., Kabashin, A. V., Sacher, E., Meunier, M., & Luong, J. H. (2004). Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. The Journal of Physical Chemistry B, 108(43), 16864–16869.

    Article  Google Scholar 

  38. Vroman, L., Adams, A. L., Fischer, G. C., & Munoz, P. C. (1980). Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood, 55(1), 156–159.

    Article  Google Scholar 

  39. Lemire, J. A., Harrison, J. J., & Turner, R. J. (2013). Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 11(6), 371.

    Article  Google Scholar 

  40. LoPachin, R. M., Gavin, T., DeCaprio, A., & Barber, D. S. (2011). Application of the hard and soft, acids and bases (HSAB) theory to toxicant–target interactions. Chemical Research in Toxicology, 25(2), 239–251.

  41. Frenkel, A. I., Nemzer, S., Pister, I., Soussan, L., Harris, T., Sun, Y., & Rafailovich, M. H. (2005). Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. The Journal of Chemical Physics, 123(18), 184701.

  42. Maliszewska, I., Juraszek, A., & Bielska, K. (2014). Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. Journal of Cluster Science, 25(4), 989–1004.

    Article  Google Scholar 

Download references

Acknowledgments

SK extends his thanks to the Indian Institute of Technology Madras for the HTRA-fellowship. The authors thank the DST-FIST facility of the Department of Biotechnology, Central TEM facility, Sophisticated Analytical Instrumental Facility (SAIF) of IIT Madras.

Funding

This research was funded by the Board of Research in Nuclear Sciences, Department of Atomic Energy, Government of India (34/14/40/2014-BRNS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anju Chadha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Research Involving Humans and Animals Statement

This research did not involve the use of humans and animals.

Informed Consent

None.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOC 13833 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, S., Jayakumar, D., Madhyastha, H. et al. The Complexity of Microbial Metal Nanoparticle Synthesis: A Study of Candida parapsilosis ATCC 7330 mediated Gold Nanoparticles Formation. BioNanoSci. 11, 336–344 (2021). https://doi.org/10.1007/s12668-021-00825-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00825-6

Keywords

Navigation