Skip to main content
Log in

Hyaluronic Acid/Oxidized К-Carrageenan Electrospun Nanofibers Synthesis and Antibacterial Properties

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

The current examination is relating to building up a novel nanofiber wound dressing including hyaluronic acid (HA)/oxidized К-carrageenan (OKC) for biomedical application. Until now, electrospinning of К-carrageenan (КC) has fizzled, because of its high-hydrophilic nature, its shaping gel partiality. To beat this problem, KC is exposed to oxidation, by means of sodium periodate (NaIO4). The ideal conditions are NaIO4 to КC 0.5:1; temperature, 40 °C; time, 3 h; and pH 3. OКC was mixed with HA and polyvinyl alcohol (PVA) for delivering electrospun arrangement, which is at long last manufactured to frame nanofiber, utilizing electrospinning setup. The created nanofiber was evaluated by SEM and FTIR spectroscopy, and measuring antibacterial properties was likewise assessed. SEM pictures uncovered that the mixing proportion 2.5:2.5:5 of HA, OКC, and PVA individually accomplished uniform, normal, and globule-free nano-filaments. The outcomes showed likewise that all nano-filaments have antibacterial properties against Gram-positive and Gram-negative microbes, which is elevated to be utilized effectively in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Anka, F. H., & Balkus, K. J., Jr. (2013). Novel nanofiltration hollow fiber membrane produced via electrospinning. Industrial & Engineering Chemistry Research, 52(9), 3473–3480.

    Article  Google Scholar 

  2. Gorji, M., Jeddi, A. A. A., & Gharehaghaji, A. A. (2012). Fabrication and characterization of polyurethane electrospun nanofiber membranes for protective clothing applications. Journal of Applied Polymer Science, 125(5), 4135–4141.

    Article  Google Scholar 

  3. Wang, C., Zhang, K., Wang, H., Xu, S., & Han, C. C. (2015). Evaluation of biodegradability of poly (DL-lactic-co-glycolic acid) scaffolds for post-surgical adhesion prevention: In vitro, in rats and in pigs. Polymer, 61, 174–182.

    Article  Google Scholar 

  4. Lim, H.-P., Tey, B.-T., & Chan, E.-S. (2014). Particle designs for the stabilization and controlled-delivery of protein drugs by biopolymers: A case study on insulin. Journal of Controlled Release, 186, 11–21.

    Article  Google Scholar 

  5. Brenner, E. K., Schiffman, J. D., Thompson, E. A., Toth, L. J., & Schauer, C. L. (2012). Electrospinning of hyaluronic acid nanofibers from aqueous ammonium solutions. Carbohydrate Polymers, 87(1), 926–929.

    Article  Google Scholar 

  6. Abou-Okeil, A., Aly, A. A., Amr, A., & Soliman, A. A. (2019). Biocompatible hydrogel for cartilage repair with adjustable properties. Polymers for Advanced Technologies, 30(8), 2026–2033.

    Article  Google Scholar 

  7. Necas, J., Bartosikova, L., Brauner, P., & Kolar, J. (2008). Hyaluronic acid (hyaluronan): A review. Veterinarni medicina, 53(8), 397–411.

    Article  Google Scholar 

  8. Fahmy, H. M., Aly, A. A, Abou-Okeil, A. (2018) A non-woven fabric wound dressing containing layer – by – layer deposited hyaluronic acid and chitosan International Journal of Biological Macromolecules, 114 https://doi.org/10.1016/j.ijbiomac.2018.03.149

  9. Yao, S., Wang, X., Liu, X., Wang, R., Deng, C., & Cui, F. (2013). Effects of ambient relative humidity and solvent properties on the electrospinning of pure hyaluronic acid nanofibers. Journal of nanoscience and nanotechnology, 13(7), 4752–4758.

    Article  Google Scholar 

  10. Liu, Y., Ma, G., Fang, D., Xu, J., Zhang, H., & Nie, J. (2011). Effects of solution properties and electric field on the electrospinning of hyaluronic acid. Carbohydrate Polymers, 83(2), 1011–1015.

    Article  Google Scholar 

  11. Xu, S., Li, J., He, A., Liu, W., Jiang, X., Zheng, J., & Fang, D. (2009). Chemical crosslinking and biophysical properties of electrospun hyaluronic acid based ultra-thin fibrous membranes. Polymer, 50(15), 3762–3769.

    Article  Google Scholar 

  12. Uppal, R., Ramaswamy, G. N., Arnold, C., Goodband, R., & Wang, Y. (2011). Hyaluronic acid nanofiber wound dressing—production, characterization, and in vivo behavior. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 97(1), 20–29.

    Article  Google Scholar 

  13. Um, I. C., Fang, D., Hsiao, B. S., Okamoto, A., & Chu, B. (2004). Electro-spinning and electro-blowing of hyaluronic acid. Biomacromolecules, 5(4), 1428–1436.

    Article  Google Scholar 

  14. Ji, Y., Ghosh, K., Shu, X. Z., Li, B., Sokolov, J. C., Prestwich, G. D., & Rafailovich, M. H. (2006). Electrospun three-dimensional hyaluronic acid nanofibrous scaffolds. Biomaterials, 27(20), 3782–3792.

    Article  Google Scholar 

  15. Li, J., He, A., Zheng, J., & Han, C. C. (2006). Gelatin and gelatin− hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions. Biomacromolecules, 7(7), 2243–2247.

    Article  Google Scholar 

  16. Yao, C., Li, X., & Song, T. (2007). Fabrication of zein/hyaluronic acid fibrous membranes by electrospinning. Journal of Biomaterials Science, Polymer Edition, 18(6), 731–742.

    Article  Google Scholar 

  17. Hsu, F.-Y., Hung, Y.-S., Liou, H.-M., & Shen, C.-H. (2010). Electrospun hyaluronate–collagen nanofibrous matrix and the effects of varying the concentration of hyaluronate on the characteristics of foreskin fibroblast cells. Acta biomaterialia, 6(6), 2140–2147.

    Article  Google Scholar 

  18. Prajapati, V. D., Maheriya, P. M., Jani, G. K., & Solanki, H. K. (2014). RETRACTED: Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydrate polymers, 105, 97–112.

    Article  Google Scholar 

  19. Parkar, S. G., Stevenson, D. E., & Skinner, M. A. (2008). The potential influence of fruit polyphenols on colonic microflora and human gut health. International journal of food microbiology, 124(3), 295–298.

    Article  Google Scholar 

  20. Cunha, L., & Grenha, A. (2016). Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Marine drugs, 14(3), 42.

    Article  Google Scholar 

  21. Kong, L., & Ziegler, G. R. (2013). Fabrication of κ-carrageenan fibers by wet spinning: Addition of ι-carrageenan. Food Hydrocolloids, 30(1), 302–306.

    Article  Google Scholar 

  22. Lindblad, M. S., Sjöberg, J., Albertsson, A.-C., & Hartman, J. (2007). Hydrogels from polysaccharides for biomedical applications. ACS Publications.

  23. Aly, A. A., Abou-Okeil, A., & Fahmy, H. M. (2018). Grafting of N-vinyl-2-pyrrolidone onto κ-carrageenan for silver nanoparticles synthesis. Carbohydrate polymers, 198, 119–123.

    Article  Google Scholar 

  24. Stijnman, A. C., Bodnar, I., & Tromp, R. H. (2011). Electrospinning of food-grade polysaccharides. Food Hydrocolloids, 25(5), 1393–1398.

    Article  Google Scholar 

  25. Nouri, A., Yaraki, M. T., Ghorbanpour, M., & Wang, S. (2018). Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. International journal of biological macromolecules, 115, 227–235.

    Article  Google Scholar 

  26. Shankar, S., & Rhim, J.-W. (2018). Antimicrobial wrapping paper coated with a ternary blend of carbohydrates (alginate, carboxymethyl cellulose, carrageenan) and grapefruit seed extract. Carbohydrate polymers, 196, 92–101.

    Article  Google Scholar 

  27. Liu, Y., Qin, Y., Bai, R., Zhang, X., Yuan, L., & Liu, J. (2019). Preparation of pH-sensitive and antioxidant packaging films based on κ-carrageenan and mulberry polyphenolic extract. International journal of biological macromolecules, 134, 993–1001.

    Article  Google Scholar 

  28. Abdelgawad, A. M., Hudson, S. M., & Rojas, O. J. (2014). Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydrate polymers, 100, 166–178.

    Article  Google Scholar 

  29. Aly, A. S., Abdel-Mohsen, A. M., Hrdina, R., & Abou-Okeil, A. (2011). Preparation and characterization of polyethylene glycol/dimethyl siloxane adduct and its utilization as finishing agent for cotton fabric. Journal of Natural Fibers, 8(3). https://doi.org/10.1080/15440478.2011.602243

  30. Ibrahim, N. A., Aly, A. A., Eid, B. M., & Fahmy, H. M. (2018). Green approach for multifunctionalization of cellulose-containing fabrics. Fibers and Polymers, 19(11), 2298–2306.

    Article  Google Scholar 

  31. Hou, Q., Liu, W., Liu, Z., Duan, B., & Bai, L. (2008). Characteristics of antimicrobial fibers prepared with wood periodate oxycellulose. Carbohydrate polymers, 74(2), 235–240.

    Article  Google Scholar 

  32. Nada, A. A., Soliman, A. A. F., Aly, A. A., & Abou-Okeil, A. (2019). Stimuli-free and biocompatible hydrogel via hydrazone chemistry: Synthesis, characterization, and bioassessment. Starch-Stärke, 71(5–6), 1800243.

    Google Scholar 

  33. Hebeish, A., Fahmy, H. M., Abo-Shosha, M. H., & Ibrahim, N. A. (2006). Preparation of a chemical polyblend sizing agent via polymerization of acrylic acid with polyvinyl alcohol. Polymer-Plastics Technology and Engineering, 45(3), 309–315.

    Article  Google Scholar 

  34. Ibrahim, N. A., Hebeish, A., Fahmy, H. M., & Abo-Shosha, M. H. (2006). Synthesis, characterization, and application of poly (acrylamide)/poly (vinyl alcohol) polyblends. Polymer-Plastics Technology and Engineering, 45(3), 341–350.

    Article  Google Scholar 

  35. Abou-Okeil, A., Fahmy, H. M., El-Bisi, M. K., & Ahmed-Farid, O. A. (2018). Hyaluronic acid/Na-alginate films as topical bioactive wound dressings. European Polymer Journal, 109, 101–109.

    Article  Google Scholar 

  36. Hou, Q. X., Liu, W., Liu, Z. H., & Bai, L. L. (2007). Characteristics of wood cellulose fibers treated with periodate and bisulfite. Industrial & engineering chemistry research, 46(23), 7830–7837.

    Article  Google Scholar 

  37. Kim, U.-J., Kuga, S., Wada, M., Okano, T., & Kondo, T. (2000). Periodate oxidation of crystalline cellulose. Biomacromolecules, 1(3), 488–492.

    Article  Google Scholar 

  38. Li, H., Wu, B., Mu, C., & Lin, W. (2011). Concomitant degradation in periodate oxidation of carboxymethyl cellulose. Carbohydrate Polymers, 84(3), 881–886.

    Article  Google Scholar 

  39. Jaworek, A., Krupa, A., Lackowski, M., Sobczyk, A. T., Czech, T., Ramakrishna, S., & Pliszka, D. (2009). Nanocomposite fabric formation by electrospinning and electrospraying technologies. Journal of Electrostatics, 67(2–3), 435–438.

    Article  Google Scholar 

  40. Tan, S.-H., Inai, R., Kotaki, M., & Ramakrishna, S. (2005). Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer, 46(16), 6128–6134.

    Article  Google Scholar 

  41. Hebeish, A., Ibrahim, N. A., Shosha, M. H. A., & Fahmy, H. M. (1996). Rheological behavior of some polymeric sizing agents alone and in admixtures. Polymer–Plastics Technology and Engineering, 35(4), 517–543.

    Article  Google Scholar 

  42. Rad, Z. P., Mokhtari, J., & Abbasi, M. (2018). Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering. Materials Science and Engineering: C, 93, 356–366.

    Article  Google Scholar 

  43. Bonilla, J., Fortunati, E., Atarés, L., Chiralt, A., & Kenny, J. M. (2014). Physical, structural and antimicrobial properties of poly vinyl alcohol–chitosan biodegradable films. Food Hydrocolloids, 35, 463–470.

    Article  Google Scholar 

  44. Abou-Okeil, A. (2012). Ag nanoparticles growing onto cotton fabric using chitosan as a template. Journal of Natural Fibers, 9(2). https://doi.org/10.1080/15440478.2011.651841

  45. Fahmy, H. M., Eid, R. A. A., Hashem, S. S., & Amr, A. (2013). Enhancing some functional properties of viscose fabric. Carbohydrate polymers, 92(2), 1539–1545.

    Article  Google Scholar 

  46. Abo-Shosha, M. H., Fahmy, H. M., Hassan, F. H., Ashour, A. M., & Khalil, A. A. (2009). Tetracycline hydrate and gentamicine sulfate containing carboxymethylated cotton fabric suitable for moist wound healing dressings: Properties and evaluation. Journal of Industrial Textiles, 38(4), 341–360.

    Article  Google Scholar 

  47. Fahmy, H. M., Aly, A. A., & Sayed, S. M. (2017). Graft copolymerization of N-vinylpyrrolidone onto stearyl alcohol to impart water repellency and antibacterial properties for cotton/polyester fabric. Progress in Organic Coatings, 105, 176–182.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the National Research Center, Textile Research Division, Central Lab, for its technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abou-Okeil.

Ethics declarations

Research Involving Humans and Animals Statement

None.

Informed Consent

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou-Okeil, A., Fahmy, H.M., Fouda, M.M.G. et al. Hyaluronic Acid/Oxidized К-Carrageenan Electrospun Nanofibers Synthesis and Antibacterial Properties. BioNanoSci. 11, 687–695 (2021). https://doi.org/10.1007/s12668-021-00884-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-021-00884-9

Keywords

Navigation