Skip to main content

Advertisement

Log in

Microscopic Insights into the Chlorine Evolution Reaction on RuO2(110): a Mechanistic Ab Initio Atomistic Thermodynamics Study

  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

The frequently discussed mechanisms for the chlorine evolution reaction (CER)—Volmer–Tafel, Volmer–Heyrovsky, and Krishtalik—are assessed for the case of RuO2 within a mechanistic ab initio thermodynamics approach, employing the concept of Gibbs energy loss. The CER over the fully O-covered RuO2(110) surface, the stable surface configuration under CER conditions, is shown to proceed via the Volmer–Heyrovsky mechanism, i.e., the adsorption and discharge of the chloride ion are followed by the direct recombination of this surface species with a chloride ion from the electrolyte solution. The weak adsorption of the chloride ion on the fully O-covered RuO2(110) surface constitutes the elementary reaction step with highest Gibbs energy loss which has its origin in a too strong ruthenium–oxygen bond. Therefore, the activity of the model catalyst RuO2(110) can be enhanced by weakening the surface metal–oxygen bond such as realized with a monolayer of PtO2 coated on RuO2(110).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Trasatti, Electrochim Acta 32, 369 (1987)

    Article  CAS  Google Scholar 

  2. M. Thomassen, C. Karlsen, B. Borresen, R. Tunold, Electrochim Acta 51, 2909 (2006)

    Article  CAS  Google Scholar 

  3. J.L. Fernandez, M.R.G. de Chialvo, A.C. Chialvo, Electrochem Commun 2, 630 (2000)

    Article  CAS  Google Scholar 

  4. J.L. Fernandez, M.R.G. de Chialvo, A.C. de Chialvo, Electrochim Acta 47, 1129 (2002)

    Article  CAS  Google Scholar 

  5. J.L. Fernandez, M.R.G. de Chialvo, A.C. de Chialvo, Electrochim Acta 47, 1137 (2002)

    Article  CAS  Google Scholar 

  6. J.L. Fernandez, M.R.G. de Chialvo, A.C. de Chialvo, Electrochim Acta 47, 1145 (2002)

    Article  CAS  Google Scholar 

  7. T. Hepel, F.H. Pollak, W.E. O’Grady, J Electroanal Chem 188, 281 (1985)

    Article  CAS  Google Scholar 

  8. T. Hepel, F.H. Pollak, W.E. O’Grady, J Electrochem Soc 113, 69 (1986)

    Article  Google Scholar 

  9. V. Consonni, S. Trasatti, F.H. Pollak, W.E. O’Grady, J Electroanal Chem 228, 393 (1987)

    Article  CAS  Google Scholar 

  10. H.A. Hansen, I.C. Man, F. Studt, F. Abild-Pedersen, T. Bligaard, J. Rossmeisl, Phys Chem Chem Phys 12, 283 (2010)

    Article  CAS  Google Scholar 

  11. K.S. Exner, J. Anton, T. Jacob, H. Over, Electrochim Acta 120, 460 (2014)

    Article  CAS  Google Scholar 

  12. A.B.. Andersen, Electrocatal. 3, 176 (2012)

  13. J.K. Nørskov, T. Bligaard, J. Rossmeisl, C.H. Christensen, Nat Chem 1, 37 (2009)

    Article  Google Scholar 

  14. SeqQuest website: http://dft.sandia.gov/Quest/SeqQ_Home.html

  15. J.P. Perdew, K. Burke, M. Ernzerhof, Phys Rev Lett 77, 3865 (1996)

    Article  CAS  Google Scholar 

  16. J.P. Perdew, K. Burke, M. Ernzerhof, Phys Rev Lett 78, 1396 (1997)

    Article  CAS  Google Scholar 

  17. Jaguar, version 7.9, Schrödinger LLC, New York, NY, 2012.

  18. Jaguar User Manual, 2009, http://theochem.chem.columbia.edu/group/computing

  19. T. Jacob, Ab-initio Atomistic Thermodynamics for Electrocatalysis, in: Fuel Cell Catalysis: A Surface Science Approach, Koper, M.T.M.; Wieckowski, A. (eds.), John Wiley&Sons Inc., New Jersey, USA 2009.

  20. T. Jacob, J Electroanal Chem 607, 158 (2007)

    Article  CAS  Google Scholar 

  21. S. Trasatti, W. E. O’Grady, in: H. Gericher, C. W. Tobias (Eds.), Advances in Electrochemical Science and Engineering vol. 17 (1981), Wiley, New York, 117

  22. L.J.J. Jansen, L.M.C. Starmans, J.G. Visser, E. Barendrecht, Electrochim Acta 22, 1093 (1977)

    Article  Google Scholar 

  23. S. Trasatti, G. Lodi, in: S. Trasatti (Ed.), Electrodes of Conductive Metallic Oxides Anodes Part B (1981) Elsevier, Amsterdam 521

  24. L.I. Krishtalik, Electrochim Acta 26, 329 (1981)

    Article  CAS  Google Scholar 

  25. M.T.M. Koper, J Sol Stat Electrochem 17, 339 (2013)

    Article  CAS  Google Scholar 

  26. J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lundquist, J.R. Kitchin, T. Bligaard, H. Jonsson, J Phys Chem B 108, 17886 (2004)

    Article  Google Scholar 

  27. I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg, J. Rossmeisl, I. Chorckendorff, Energy Environmental Sci 5, 6744 (2013)

    Article  Google Scholar 

  28. I.C. Man, H.Y. Hu, F. Calle-Vallejo, H.A. Hansen, J.I. Martinez, N.G. Inoglu, J. Kichtin, T.F. Jaramillo, J.K. Norskov, J. Rossmeisl, Chem Cat Chem 3, 1159 (2011)

    CAS  Google Scholar 

  29. A.B.. Laursen, A.S. Varela, F. Dionigi, H. Fanchiu, C. Miller, O.L. Trinahmmer, J. Rossmeisl, S. Dahl, J Chem Educat 89, 1595 (2012)

  30. H. Over, Electrochim Acta 93, 314 (2013)

    Article  CAS  Google Scholar 

  31. Y.D. Pankratiev, React Kinet Catal Lett 20, 255 (1982)

    Article  Google Scholar 

  32. J. Rossmeisl, Z. –W. Qu, H. Zhu, G. –J. Kroes, J. K. Nørskov, J Electroanal Chem 607, 83 (2007)

  33. T. V. Bommaraju, C.-P- Chen, V. I. Birss, Modern Alkali Technology 8, 57 (2001).

  34. R. Parsons, Transactions Faraday Soc 47, 1332 (1951)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

K.E. acknowledges financial support by Fonds Chemischer Industrie (FCI) via a PhD scholarship. Franziska Hess is acknowledged for providing figures of ball and stick models of the stoichiometric and fully O-covered RuO2(110) surface. H.O. was supported by the LOEWE program STORE_E within the Laboratory of Materials Research at the JLU. T.J. acknowledges support from the European Research Council (ERC) through the ERC-Starting Grant THEOFUN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herbert Over.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exner, K.S., Anton, J., Jacob, T. et al. Microscopic Insights into the Chlorine Evolution Reaction on RuO2(110): a Mechanistic Ab Initio Atomistic Thermodynamics Study. Electrocatalysis 6, 163–172 (2015). https://doi.org/10.1007/s12678-014-0220-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-014-0220-3

Keywords

Navigation