Skip to main content
Log in

Electrocatalysis of NADH on 3,5-Dinitrobenzoic Acid Encapsulated on Multiwalled Carbon Nanotube-Modified Electrode

  • Letters
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

We report that glassy carbon electrode (GCE) modified with multiwalled carbon nanotubes (MWCNTs) can encapsulate or entrap 3,5-dinitrobenzoic acid (35DNB) generating a 35DNB-MWCNTGC electrode. After electrochemical reduction in situ of only one nitro group of 35DNB, it turns into the hydroxylamine derivative (R-NHOH), which can be further oxidized to the nitroso derivative (R-NO). Then, R-NO/R-NHOH redox couple was electrogenerated in situ by cycling the potential between 0.20 and −0.20 V vs Ag/AgCl. The very well-defined and persistent redox couple was characterized with a formal potential, E o’ = −28 mV vs Ag/AgCl at a scan rate of 20 mV s−1. Using the Laviron’s plot, a transfer coefficient, α = 0.45, and an electron transfer rate constant, k s  = 10.5 s−1, for the electron transfer of the couple R-NO/R-NHOH, were calculated. This redox reaction results to be a very efficient mediator for electrocatalytic NADH oxidation. The 35DNB-MWCNTGC electrode efficiently catalyzes the oxidation of NADH with a decrease of more than 0.60 V vs Ag/AgCl in the overpotential compared to the bare GCE and a difference of 0.25 V vs Ag/AgCl with respect to the situation without mediator. The preparation of the electrode is very easy and not time-consuming.

The precursor 3,5-dinitrobenzoic acid entrapped on the MWCNTs three dimensional array generate the redox couple RNO/RNHOH capable to act as mediator in the oxidation of NADH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. G.G. Wildgoose, C.E. Banks, H.C. Leventis, R.G. Compton, Microchim. Acta 152, 187 (2006)

    Article  CAS  Google Scholar 

  2. M. Liu, Y. Yang, T. Zhu, Z. Liu, Carbon 43, 1470 (2005)

    Article  CAS  Google Scholar 

  3. L. Zeng, L. Alemany, C. Edwards, A. Barron, Nano Res. 1, 72 (2008)

    Article  CAS  Google Scholar 

  4. S. Shahrokhian, H. Zare-Mehrjardi, H. Khajehsharifi, J. Solid State Electrochem. 13, 1567 (2009)

    Article  CAS  Google Scholar 

  5. R.J. Chen, Y. Zhang, D. Wang, H. Dai, J. Am. Chem. Soc. 123, 3838 (2001)

    Article  CAS  Google Scholar 

  6. L. Wang, S. Feng, J. Zhao, J. Zheng, Z. Wang, L. Li, Z. Zhu, Appl. Surf. Sci. 256, 6060 (2010)

    Article  CAS  Google Scholar 

  7. C.G.R. Heald, G.G. Wildgoose, L. Jiang, T.G.J. Jones, R.G. Compton, ChemPhysChem 5, 1794 (2004)

    Article  CAS  Google Scholar 

  8. G.G. Wildgoose, S.J. Wilkins, G.R. Williams, R.R. France, D.L. Carnahan, L. Jiang, T.G.J. Jones, R.G. Compton, ChemPhysChem 6, 352 (2005)

    Article  CAS  Google Scholar 

  9. M. Santhiago, P.R. Lima, W.D.J.R. Santos, A.B.D. Oliveira, L.T. Kubota, Electrochim. Acta 54, 6609 (2009)

    Article  CAS  Google Scholar 

  10. C.C. Corrêa, M. Santhiago, A.L.B. Formiga, L.T. Kubota, Electrochim. Acta 90, 309 (2013)

    Article  Google Scholar 

  11. R. Moscoso, J. Carbajo, M. Lopez, L.J. Núñez-Vergara, J.A. Squella, Electrochem. Commun. 13, 217 (2011)

    Article  CAS  Google Scholar 

  12. J. Urzúa, J. Carbajo, C. Yáñez, J.F. Marco, J.A. Squella, J. Solid State Electrochem. 20, 1131 (2016)

    Article  Google Scholar 

  13. R. Moscoso, J. Carbajo, J.D. Mozo, J.A. Squella, J. Electroanal. Chem. 765, 149 (2016)

    Article  CAS  Google Scholar 

  14. L. Gorton, Electrochemistry of NAD(P)+/NAD(P)H, in Encyclopedia of electrochemistry, ed. by A.J. Bard, M. Stratmann (Wiley-VCH, Weinheim, 2002), pp. 67–143

    Google Scholar 

  15. M. Wooten, W. Gorski, Anal. Chem. 82, 1299 (2010)

    Article  CAS  Google Scholar 

  16. D.C.-S. Tse, T. Kuwana, Anal. Chem. 50, 1315 (1978)

    Article  CAS  Google Scholar 

  17. L. Gorton, Domı, amp, x, E. nguez. Rev. Mol. Biotechnol. 82, 371 (2002)

    Article  CAS  Google Scholar 

  18. B. Prieto-Simón, E. Fàbregas, Biosens. Bioelectron. 19, 1131 (2004)

    Article  Google Scholar 

  19. Q. Gao, M. Sun, P. Peng, H. Qi, C. Zhang, Microchim. Acta 168, 299 (2010)

    Article  CAS  Google Scholar 

  20. S.-W. Wu, H.Y. Huang, Y.C. Guo, C.M. Wang, J. Phys. Chem. C 112, 9370 (2008)

    Article  CAS  Google Scholar 

  21. A. Sobczak, T. Rębiś, G. Milczarek, Bioelectrochemistry 106(Part B), 308 (2015)

    Article  CAS  Google Scholar 

  22. R. Antiochia, A. Gallina, I. Lavagnini, F. Magno, Electroanalysis 14, 1256 (2002)

    Article  CAS  Google Scholar 

  23. N. Mano, A. Kuhn, Biosens. Bioelectron. 16, 653 (2001) 

    Article  CAS  Google Scholar 

  24. N. Mano and A. Kuhn, Journal of Electroanalytical Chemistry 477(1), 79 (1999).

  25. F. D. Munteanu, N. Mano, A. Kuhn, and L. Gorton, Journal of Electroanalytical Chemistry 564, 167 (2004).

  26. E. Laviron, Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 101(1), 19 (1979).

  27. R. Guidelli, R. Compton, J. Feliu, E. Gileadi, J. Lipkowski, W. Schmickler, S. Trasatti, Defining the transfer coefficient in electrochemistry (IUPAC technical report) Pure Appl.Chem. 86(2014), 245–258.

  28. Hyoungki Park, Jijun Zhao, and Jian Ping Lu, Nano Letters 6(5), 916 (2006).

Download references

Acknowledgments

The authors are grateful to FONDECYT (Grant N° 1130160) for the support of this work. Also, the authors also thank the Faculty of Chemical and Pharmaceutical Sciences at the University of Chile to generate a favorable environment for scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Squella.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moscoso, R., Inostroza, E., Bollo, S. et al. Electrocatalysis of NADH on 3,5-Dinitrobenzoic Acid Encapsulated on Multiwalled Carbon Nanotube-Modified Electrode. Electrocatalysis 7, 357–361 (2016). https://doi.org/10.1007/s12678-016-0323-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0323-0

Keywords

Navigation