Skip to main content
Log in

Characterization of the complete chloroplast genome of the Chinese crabapple Malus prunifolia (Rosales: Rosaceae: Maloideae)

  • Technical Note
  • Published:
Conservation Genetics Resources Aims and scope Submit manuscript

Abstract

Malus prunifolia is a species of crabapple tree with high ecological and economic values. In this study, we assembled its complete chloroplast genome from high-throughput sequencing data. The circular double-stranded genome is 160,041 bp in length, and exhibits a typical quadripartite structure of the large (LSC, 88,119 bp) and small (SSC, 19,204 bp) single-copy regions, separated by a pair of inverted repeat regions (IRs, 26,359 bp each). It contains 129 genes, including 84 protein-coding genes (77 PCG species), 37 transfer RNA genes (30 tRNA species) and eight ribosomal RNA genes (four rRNA species). The nucleotide composition is asymmetric (31.32 % A, 18.64 % C, 17.92 % G & 32.12 % T) with an overall A+T content of 63.44 %. Phylogenetic analysis corroborated the traditional morphological taxonomy of the family Rosaceae, and indicated that M. prunifolia was phylogenetically closely related to the genus Pyrus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Bai R, Ma F, Liang D, Zhao X (2009) Phthalic acid induces oxidative stress and alters the activity of some antioxidant enzymes in roots of Malus prunifolia. J Chem Ecol 35:488–494. doi:10.1007/s10886-009-9615-7

    Article  CAS  PubMed  Google Scholar 

  • Fu M, Li C, Ma F (2012) Physiological responses and tolerance to NaCl stress in different biotypes of Malus prunifolia. Euphytica 189:101–109. doi:10.1007/s10681-012-0721-1

    Article  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucl Acids Res 41:e129. doi:10.1093/nar/gkt371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen RK, Saski C, Lee S-B, Hansen AK, Daniell H (2011) Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol 28:835–847. doi:10.1093/molbev/msq261

    Article  CAS  PubMed  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucl Acids Res 41:W575–W581. doi:10.1093/nar/gkt289

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu L, Gu C, Li C, Jiang S, Alexander C, Bartholomew B, Brach AR, DE Boufford, Ikeda H, Ohba H, Robertson KR, Spongberg SA (2003) Rosaceae. In: Flora of China Editorial Committee (ed) Flora of China, vol 9. Science Press, Beijing, p 184

    Google Scholar 

  • Maria John KM, Enkhtaivan G, Kim JJ, Kim DH (2014) Metabolic variation and antioxidant potential of Malus prunifolia (wild apple) compared with high flavon-3-ol containing fruits (apple, grapes) and beverage (black tea). Food Chem 163:46–50. doi:10.1016/j.foodchem.2014.04.074

    Article  CAS  PubMed  Google Scholar 

  • Salamone I, Govindarajulu R, Falk S, Parks M, Liston A, Ashman T-L (2013) Bioclimatic, ecological, and phenotypic intermediacy and high genetic admixture in a natural hybrid of octoploid strawberries. Am J Bot 100:939–950. doi:10.3732/ajb.1200624

    Article  PubMed  Google Scholar 

  • Schaefer S, Medeiro S, Ramírez J, Galagovsky L, Pereira-Netto A (2002) Brassinosteroid-driven enhancement of the in vitro multiplication rate for the marubakaido apple rootstock [Malus prunifolia (Willd.) Borkh]. Plant Cell Rep 20:1093–1097. doi:10.1007/s00299-002-0442-3

    Article  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terakami S, Matsumura Y, Kurita K, Kanamori H, Katayose Y, Yamamoto T, Katayama H (2012) Complete sequence of the chloroplast genome from pear (Pyrus pyrifolia): genome structure and comparative analysis. Tree Genet Genom 8:841–854. doi:10.1007/s11295-012-0469-8

    Article  Google Scholar 

  • Wang S, Shi C, Gao L-Z (2013) Plastid genome sequence of a wild woody oil species, Prinsepia utilis, provides insights into evolutionary and mutational patterns of Rosaceae chloroplast genomes. PLoS One 8:e73946. doi:10.1371/journal.pone.0073946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31501741), the Science and Technology Innovative Engineering Project in Shaanxi Province of China (2015NY114), and the Shaanxi Postdoctoral Science Foundation (133782).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, L., Li, K., Liu, Z. et al. Characterization of the complete chloroplast genome of the Chinese crabapple Malus prunifolia (Rosales: Rosaceae: Maloideae). Conservation Genet Resour 8, 227–229 (2016). https://doi.org/10.1007/s12686-016-0540-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12686-016-0540-0

Keywords

Navigation