Skip to main content
Log in

Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils

  • Research Article
  • Published:
Journal of Crop Science and Biotechnology Aims and scope Submit manuscript

Abstract

An experiment was carried out to determine the plant growth-promoting activities of fipronil- and pyriproxyfen-tolerant Mesorhizobium isolates in the presence and absence of insecticides. The bioremediation and plant growth-promoting potentials of Mesorhizobium isolate (MRC4) was assessed using chickpea as a test crop grown under fipronil- and pyriproxyfen-stressed soils. In this study, the most promising mesorhizobial isolate (MRC4) tolerated fipronil and pyriproxyfen up to a concentration of 1600 μg ml−1 and 1400 μg ml−1, respectively. Isolate MRC4 produced a substantial amount of indole acetic acid (44.3 μg ml−1), salicylic acid (35 μg ml−1), 2,3 di-hydroxybenzoic acid (19 μg ml−1), and exo-polysaccharides (21 μg ml−1) in the absence of insecticides. The plant growth-promoting substances displayed by the isolate MRC4 declined progressively with increasing concentrations of each insecticide. The insecticide tolerant isolate MRC4 was further tested for its effect on chickpea plants grown in fipronil- and pyriproxyfen-treated soils. The insecticide-tolerant isolate MRC4 increased the dry matter accumulation progressively. A maximum increase of 80 (at 600 μg kg−1 soil of fipronil) and 118% (at 3900 μg kg−1 soil of pyriproxyfen) was recorded 135 days after sowing when compared to noninoculated plants treated with the same rates of each insecticide. Moreover, Mesorhizobium isolate MRC4 when used in fipronil- and pyriproxyfen-treated soil also increased symbiotic properties (nodulation and leghaemoglobin content), root N, shoot N, root P, shoot P, seed yield, and seed protein compared to the un-inoculated but treated solely with insecticide. The present finding suggests that the mesorhizobial isolate endowed with multiple properties could be used to facilitate the productivity of chickpea under insecticidestressed soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aajoud A, Ravanel P, Tissut M. 2003. Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J. Agric. Food Chem. 51: 1347–1352

    Article  PubMed  CAS  Google Scholar 

  • Abd-Alla MH, Omar SA, Karanxha S. 2000. The impact of pes ticides on arbuscular mycorrhizal and nitrogen-fixing sym bioses in legumes. Appl. Soil Ecol. 14: 191–200

    Article  Google Scholar 

  • Alexander DB, Zuberer DA. 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol. Fert. Soils 12, 39–45

    Article  CAS  Google Scholar 

  • Bakker AW, Schipper B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth stimulation. Soil Biol. Biochem. 19: 451–457

    Article  CAS  Google Scholar 

  • Bano N, Musarrat J. 2003. Isolation and characterization of phorate degrading soil bacteria of environmental and agro nomic significance. Lett. Appl. Microbiol. 36: 349–353

    Article  PubMed  CAS  Google Scholar 

  • Barker SJ, Tagu D. 2000. The roles of auxins and cytokinins in mycorrhizal symbioses. J. Plant Growth Reg. 19: 144–154

    CAS  Google Scholar 

  • Bobe A, Coste CM, Cooper JF. 1997. Factors influencing the adsorption of fipronil in soils. J. Agric. Food Chem. 45: 4861–4865

    Article  CAS  Google Scholar 

  • Bobe A, Cooper JF, Coste CM, Mulle MA. 1998a. Behavior of fipronil in soil under Sahelian plain field conditions. Pesticide Sci. 52: 275–281

    Article  CAS  Google Scholar 

  • Bobe A, Meallier P, Cooper JF, Coste CM. 1998b. Kinetics and mechanisms of abiotic degradation of fipronil (hydrolysis and photolysis). J. Agric. Food Chem. 46: 2834–2839

    Article  CAS  Google Scholar 

  • Boldt TS, Jacobsen CS. 1998. Different toxic effects of the sulphonylurea herbicides metsulfuron methyl, chlorsulfuron and thifensulfuron methyl on fluorescent pseudomonads iso lated from an agricultural soil. FEMS Microbiol. Lett. 161: 29–35

    Article  CAS  Google Scholar 

  • Brick JM, Bostock RM, Silversone SE. 1991. Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl. Environ. Microbiol. 57: 535–538

    Google Scholar 

  • Camerini S, Senatore B, Enza L, Esther I, Carmen B, Giancarlo M, Rotino GL, Bruno C, Roberto D. 2008. Introduction of a novel pathway for IAA biosynthesis to rhizobia alters vetch root nodule development. Arch. Microbiol. 190: 67–77

    Article  PubMed  CAS  Google Scholar 

  • Chanton PF, Ravanel P, Tissut M, Meyran JC. 2001. Toxicity and bioaccumulation of fipronil in the non target arthropodan fauna associated with subalpine mosquito breeding. Ecotoxicol. Environ. Saf. 52: 8–12

    Article  CAS  Google Scholar 

  • Courtois J, Jean-Paul S, Corinne R, Alain H, Claude G, Luciana D, Jean-Noël B, Bernard C. 1994. Exopolysaccharide produc tion by the Rhizobium meliloti M5N1 CS strain. Location and of quantitation the sites of O-acetylation. Carbohydr. Polymers 25: 7–12

    Article  CAS  Google Scholar 

  • Das AC, Chakravarty A, Sen G, Sukul P, Mukherjee D. 2005. A comparative study on the dissipation and microbial metabo lism of organophosphate and carbamate insecticides in orchaqualf and fluvaquent soils of West Bengal. Chemosphere 58: 579–584

    Article  PubMed  CAS  Google Scholar 

  • Devi KK, Seth N, Kothamasi S, Kothamasi D. 2007. Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (rambur) by cyanide poisoning under in vitro conditions. Curr. Microbiol. 54: 74–78

    Article  PubMed  CAS  Google Scholar 

  • Dudeja SS, Singh PC. 2008. High and low nodulation in relation to molecular diversity of chickpea Mesorhizobia in Indian soils. Arch. Agron. Soil Sci. 54: 109–120

    Article  CAS  Google Scholar 

  • Dye DW. 1962. The inadequacy of the usual determinative tests for the identification of xanthomonas spp. Nat. Sci. 5: 393–416

    Google Scholar 

  • Evans J, Seidel J, O’Connor GE, Watt J, Sutherland M. 1991. Using omethoate insecticide and legume inoculant on seed. Aust. J. Exp. Agric. 31: 71–76

    Article  CAS  Google Scholar 

  • Figueiredo MVB, Martinez CR, Burity HA, Chanway CP. 2007. Plant growth promoting rhizobacteria for improving nodula tion and nitrogen fixation in the common bean (Phaseolus vulgaris L). World J. Microbiol. Biotechnol. DOI 101007/s11274-007-9591-4

  • Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. 2007. Pesticides reduce symbiotic efficiency of nitrogen-fix ing rhizobia and host plants. PNAS 104: 10282–10287

    Article  PubMed  CAS  Google Scholar 

  • Frankenberger Jr. WT, Arshad M. 1995. Phytohormones in soils: microbial production and function. Marcel Dekker, Inc., New York

    Google Scholar 

  • Ghosh AC, Ghosh S, Basu PS. 2005. Production of extracellular polysaccharide by a Rhizobium species from root nodules of the leguminous tree Dalbergia lanceolaria. Eng. Life Sci. 5: 378–382.

    Article  CAS  Google Scholar 

  • Gordon S, Weber RP. 1951. The colorimetric estimation of IAA. Plant Physiol. 26: 192–195

    Article  PubMed  CAS  Google Scholar 

  • Guo Y, Zheng H, Yang Y, Wang, H. 2007. Characterization of Pseudomonas corrugata strain P94 isolated from soil in Beijing as a potential biocontrol agent. Curr. Microbiol. 55: 247–253

    Article  PubMed  CAS  Google Scholar 

  • Gupta N, Gahlot R, Lakshmninarayana K, Narula N. 1994. Pesticide resistance among Azotobacter chroococcum soil isolates and mutants. Microbiol. Res. 149: 391–393

    Google Scholar 

  • Hansson GB, Klemedtsson L, Stenström J, Torstensson L. 1991. Testing the influence of chemicals on soil autotrophic ammo nium oxidation. Environ. Toxic. Wat. Qual. 6: 351–360

    Article  CAS  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Willams ST. 1994. Bergey’s Manual of Determinative Bacteriology, Ninth edition, Williams and Wilkins, USA

    Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microbiol. 56: 327–333

    Article  PubMed  CAS  Google Scholar 

  • Iswaran V, Marwah TS. 1980. A modified rapid Kjeldahl method for determination of total nitrogen in agricultural and biological materials. Geobios 7: 281–282

    Google Scholar 

  • Jackson ML. 1967. Soil chemical analysis, Prentice-Hall of India, New Delhi, pp 134–144

    Google Scholar 

  • Jeon JS, Lee SS, Kim HY, Ahn TS, Song HG. 2003. Plant growth promotion in soil by some inoculated microorgan isms. J. Microbiol. 41: 271–276

    CAS  Google Scholar 

  • Joseph B, Patra RR, Lawrence R. 2007. Characterization of plant growth promoting rhizobacteria associated with chick pea (Cicer arietinum L.). Int. J. Plant Prod. 2: 141–152

    Google Scholar 

  • Juneja S, Dogra RC. 1978. Effect of aldrin on growth and oxida tive metabolism of rhizobia. J. Appl. Microbiol. 44: 107–115

    Article  CAS  Google Scholar 

  • Karadeniz A, Topcuoğlu SF, İnan S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22: 1061–1064

    Article  CAS  Google Scholar 

  • Kaur A, Kaur A. 2005. Impact of imidacloprid on soil fertility and nodulation in mung bean (Vigna radiata). Asian J. Water. Environ. Pollut. 2: 63–67

    CAS  Google Scholar 

  • Khan H, Zeb A, Ali Z, Shah SM. 2009. Impact of five insecti cides on chickpea (Cicer arietinum L.) nodulation, yield and nitrogen fixing rhizospheric bacteria. Soil Environ. 28:56–59

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Aamil M. 2004. Influence of herbicides on Chickpea Mesorhizobium symbiosis. Agronomie 24: 123–127

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Rizvi PQ. 2006. Biotoxic effects of herbi cides on growth, nodulation, nitrogenase activity, and seed production in chickpeas. Comm. Soil Sci. Plant Anal. 37: 1783–1793

    Article  CAS  Google Scholar 

  • Kundu GG, Trimohan. 1989. Effect of Rhizobium in association with granular insecticides on nodulation and yield in soybean. Current Sci. 58: 1340–1342

    Google Scholar 

  • Lopez L, Pozo C, Rodelas B, Calvo C, Juarez B, Martinez-Toledo MV, Gonzalez-Lopez J. 2005. Identification of bacte ria isolated from an oligotrophic lake with pesticide removal capacities. Ecotoxicol. 14: 299–312

    Article  CAS  Google Scholar 

  • Madhavi B, Anand CS, Bharathi A, Polasa H. 1993. Effect of pesticides on growth of rhizobia and their host plants during symbiosis. Biomed. Environ. Sci. 6; 89–94.

    PubMed  CAS  Google Scholar 

  • Mathesius U, Schlaman HRM, Spaink HP, Sautter C, Rolfe BG, Djordjevic MA. 1998. Auxin transport inhibition precedes root nodule formation in white clover roots and is regulated by flavonoids and derivatives of chitin oligosaccharides. Plant J. 14: 23–34

    Article  PubMed  CAS  Google Scholar 

  • Miettinen P, Echegoyen PE. 1996. The effect of two pesticides (Vitavax-300 and Gaucho) on rhizobia and on the nodulation of four legumes. Agric. Food Sci. Finland 5: 203–207

    CAS  Google Scholar 

  • Mody BR, Bindra MO, Modi VV. 1989. Extracellular polysac charides of cowpea rhizobia: compositional and functional studies. Arch. Microbiol. 1: 2–5

    Google Scholar 

  • Mukherjee I, Gopal M, Mathur DS. 2007. Behavior of bcyfluthrin after foliar application on chickpea (Cicer aretini um L.) and pigeon pea (Cajanus cajan L.). Bull. Environ. Contam. Toxicol. 78: 85–89

    Article  PubMed  CAS  Google Scholar 

  • Nazarian A, Mousawi M. 2005. Study of bacterial resistance to organophosphorous pesticides in Iran. Iranian J. Environ. Health Sci. Eng. 2: 207–211

    CAS  Google Scholar 

  • Neiland JB. 1981. Microbial iron compounds. Ann. Rev. Biochem. 50: 715–731

    Article  Google Scholar 

  • Pal R, Chakrabarti K, Chakraborty A, Chowdhury A. 2006. Effect of pencycuron on microbial parameters of waterlogged soil. J. Environ. Sci. Health B. 41: 1319–1331

    PubMed  CAS  Google Scholar 

  • Pattan C, Glick BR. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207–220

    Article  Google Scholar 

  • Persello-Cartieaux F, Nussaume L, Robaglia C. 2003. Tales from the underground: molecular plant-rhizobacteria interact tions. Plant Cell Environ. 26: 189–199

    Article  CAS  Google Scholar 

  • Reeves MW, Pine L, Neilands JB, Balows A. 1983. Absence of siderophore activity in Legionella species grown in iron-deficient media. J. Bacteriol. 154: 324–329

    PubMed  CAS  Google Scholar 

  • Remans R, Beebe S, Blair M, Manrique G, Tovar E, Rao I, Croonenborghs A, Torres-Gutierrez R, El-Howeity M, Michiels J, Vanderleyden J. 2008. Physiological and genetic analysis of root responsiveness to auxin-producing plant growth-promoting bacteria in common bean (Phaseolus vul garis L.). Plant Soil 302: 149–161

    Article  CAS  Google Scholar 

  • Romdhane SB, Tajini F, Trabelsi M, Aouani ME, Mhamdi R. 2007. Competition for nodule formation between introduced strains of Mesorhizobium ciceri and the native populations of rhizobia nodulating chickpea (Cicer arietinum) in Tunisia. World J. Microbiol. Biotechnol. 23: 1195–1201

    Article  Google Scholar 

  • Sadasivam S, Manikam A. 1992. Biochemical Methods for Agricultural Sciences, Wiley Eastern Limited, New Delhi, India

    Google Scholar 

  • Sharma S. 2003. Response of various isolates of Bradyrhizobium inoculation on protein content and its yield attributes of green gram [Vigna radiata (L.) Wilczek]. Legume Res. 26: 28–31

    Google Scholar 

  • Shivaramaiah HM, Kennedy IR. 2006. Biodegradation of endo sulfan by a soil bacterium. J. Environ. Sci. Health B. 41: 895–905

    PubMed  CAS  Google Scholar 

  • Sinha S, Mukherjee SK. 2008. Cadmium-induced siderophore production by a high cd-resistant bacterial strain relieved Cd toxicity in plants through root colonization. Curr. Microbiol. 56: 55–60

    Article  PubMed  CAS  Google Scholar 

  • Somasegaran P, Hoben HJ. 1994. Handbook for rhizobia: meth ods in legume Rhizobium technology. New York: Springer.

    Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31: 425–448

    Article  PubMed  CAS  Google Scholar 

  • Sridevi M, Yadav NCS, Mallaiah KV. 2008. Production of indole-acetic-acid by Rhizobium isolates from Crotalaria species. Res. J. Microbiol. 3: 276–281

    Article  CAS  Google Scholar 

  • Tank N, Saraf M. 2003. Phosphate solubilization, exopolysac charide production and indole acetic acid secretion by rhi zobacteria isolated from Trigonella foenum-graecum. Ind. J. Microbiol. 43: 37–40

    Google Scholar 

  • Tomlin CDS. 2000. The Pesticide Manual, 12th ed CDS (ed) The British Crop Protection Council, Surrey, UK

    Google Scholar 

  • Tu CM. 1996. Effect of selected herbicides on activities of microorganisms in soils. J Environ. Sci. Health B. 31: 1201–1214

    Article  Google Scholar 

  • Upadhyay RG, Sharma S. 2003. Effect of seed inoculation with various Bradyrhizobium strains on growth and yield attribute es of mungbean [Vigna radiata (L.) Wilczek]. Legume Res. 26: 211–214

    Google Scholar 

  • van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U. 2006. Defective long-distance auxin transport regulation in the Medicago truncatula super numeric nodules mutant 1[W]. Plant Physiol. 140: 1494–1506

    Article  PubMed  CAS  Google Scholar 

  • Vasileva V, Ilieva A. 2007. Effect of presowing treatment of seeds with insecticides on nodulating ability, nitrate reductase activity and plastid pigments content of lucerne (Medicago sativa L). Agron. Res. 5: 87–92

    Google Scholar 

  • Vincent JM. 1970. A Manual for the Practical Study of Root Nodule Bacteria, IBP Handbook No. 15. Blackwell Scientific Publications, Oxford, UK

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A. 2008. Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol. Lett. 30: 159-

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A. 2007a. Effect of metal tolerant plant growth promoting Bradyrhizobium sp (vigna) on growth, symbiosis, seed yield and metal uptake by greengram plants. Chemosphere 70: 36–45

    Article  PubMed  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A. 2007b. Synergistic effects of the inoculation with nitrogen-fixing and phosphate-solubilizing rhizobacteria on the performance of field-grown chickpea. J.

  • Wani PA, Zaidi A, Khan AA, Khan MS. 2005. Effect of phorate on phosphate solubilization and indole acetic acid releasing potentials rhizospheric microorganisms. Ann. Plant Protec. Sci14. 13: 139–144

    Google Scholar 

  • Yi Y, Huang W, Ge Y. 2007. Exopolysaccharide: a novel impor tant factor in the microbial dissolution of tricalcium phos phate. World J. Microbiol. Biotechnol. 24: 1059–1065

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Saghir Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahemad, M., Khan, M.S. Effect of insecticide-tolerant and plant growth-promoting Mesorhizobium on the performance of chickpea grown in insecticide stressed alluvial soils. J. Crop Sci. Biotechnol. 12, 217–226 (2009). https://doi.org/10.1007/s12892-009-0130-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12892-009-0130-8

Key words

Navigation