Skip to main content

Advertisement

Log in

Intracisternal Administration of Tissue Plasminogen Activator Improves Cerebrospinal Fluid Flow and Cortical Perfusion After Subarachnoid Hemorrhage in Mice

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Early brain injury (EBI) during the first 72 h after subarachnoid hemorrhage (SAH) is an important determinant of clinical outcome. A hallmark of EBI, global cerebral ischemia, occurs within seconds of SAH and is thought to be related to increased intracranial pressure (ICP). We tested the hypothesis that ICP elevation and cortical hypoperfusion are the result of physical blockade of cerebrospinal fluid (CSF) flow pathways by cisternal microthrombi. In mice subjected to SAH, we measured cortical blood volume (CBV) using optical imaging, ICP using pressure transducers, and patency of CSF flow pathways using intracisternally injected tracer dye. We then assessed the effects of intracisternal injection of recombinant tissue plasminogen activator (tPA). ICP rose immediately after SAH and remained elevated for 24 h. This was accompanied by a decrease in CBV and impaired dye movement. Intracisternal administration of tPA immediately after SAH lowered ICP, increased CBV, and partially restored CSF flow at 24 h after SAH. Lowering ICP without tPA, by draining CSF, improved CBV at 1 h, but not 24 h after SAH. These findings suggest that blockade of CSF flow by microthrombi contributes to the early decline in cortical perfusion in an ICP-dependent and ICP-independent manner and that intracisternal tPA may reduce EBI and improve outcome after SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Johanson C, Duncan J, Klinge P, Brinker T, Stopa E, Silverberg G. Multiplicity of cerebrospinal fluid functions: new challenges in health and disease. Cerebrospinal Fluid Res. 2008;5(1):10.

    Article  PubMed Central  PubMed  Google Scholar 

  2. van Gijn J, Kerr RS, Rinkel GJE. Subarachnoid haemorrhage. Lancet. 2007;369(9558):306–18. doi:10.1016/S0140-6736(07)60153-6.

    Article  PubMed  Google Scholar 

  3. Caner B, Hou J, Altay O, Fuj 2nd M, Zhang JH. Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem. 2012;123 Suppl 2:12–21. doi:10.1111/j.1471-4159.2012.07939.x.

    Article  CAS  PubMed  Google Scholar 

  4. de Rooij NK, Greving JP, Rinkel GJE, Frijns CJM. Early prediction of delayed cerebral ischemia after subarachnoid hemorrhage: development and validation of a practical risk chart. Stroke. 2013; 44(5):1288-94. doi:10.1161/strokeaha.113.001125.

  5. Kreiter KT, Copeland D, Bernardini GL, Bates JE, Peery S, Claassen J, et al. Predictors of cognitive dysfunction after subarachnoid hemorrhage. Stroke. 2002;33(1):200–9. doi:10.1161/hs0102.101080.

    Article  PubMed  Google Scholar 

  6. Yan J, Li L, Khatibi NH, Yang L, Wang K, Zhang W, et al. Blood–brain barrier disruption following subarchnoid hemorrhage may be faciliated through PUMA induction of endothelial cell apoptosis from the endoplasmic reticulum. Exp Neurol. 2011;230(2):240–7. doi:10.1016/j.expneurol.2011.04.022.

    Article  CAS  PubMed  Google Scholar 

  7. Sarrafzadeh A, Haux D, Sakowitz O, Benndorf G, Herzog H, Kuechler I, et al. Acute focal neurological deficits in aneurysmal subarachnoid hemorrhage: relation of clinical course, CT findings, and metabolite abnormalities monitored with bedside microdialysis. Stroke. 2003;34(6):1382–8. doi:10.1161/01.str.0000074036.97859.02.

    Article  CAS  PubMed  Google Scholar 

  8. Sakowitz OW, Santos E, Nagel A, Krajewski KL, Hertle DN, Vajkoczy P, et al. Clusters of spreading depolarizations are associated with disturbed cerebral metabolism in patients wwith aneurysmal subarachnoid hemorrhage. Stroke. 2013;44(1):220–3. doi:10.1161/strokeaha.112.672352.

    Article  PubMed  Google Scholar 

  9. Lee J-Y, He Y, Sagher O, Keep R, Hua Y, Xi G. Activated autophagy pathway in experimental subarachnoid hemorrhage. Brain Res. 2009;1287:126–35. doi:10.1016/j.brainres.2009.06.028.

    Article  CAS  PubMed  Google Scholar 

  10. Endo H, Nito C, Kamada H, Yu F, Chan PH. Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogen synthase kinase-3beta survival signaling. J Cereb Blood Flow Metab. 2007;27(5):975–82. doi:10.1038/sj.jcbfm.9600399.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Westermaier T, Jauss A, Eriskat J, Kunze E, Roosen K. Acute vasoconstriction: decrease and recovery of cerebral blood flow after various intensities of experimental subarachnoid hemorrhage in rats. J Neurosurg. 2009;110(5):996–1002. doi:10.3171/2008.8.JNS08591.

    Article  PubMed  Google Scholar 

  12. Woernle CM, Winkler KML, Burkhardt J-K, Haile SR, Bellut D, Neidert MC, et al. Hydrocephalus in 389 patients with aneurysm-associated subarachnoid hemorrhage. J Clin Neurosci. 2013;20(6):824–6. doi:10.1016/j.jocn.2012.07.015.

    Article  PubMed  Google Scholar 

  13. Schubert G, Seiz M, Hegewald A, Manville J, Thomé C. Hypoperfusion in the acute phase of subarachnoid hemorrhage. In: Feng H, Mao Y, Zhang J, editors. Early brain injury or cerebral vasospasm. Acta neurochirurgica supplements. Vienna: Springer; 2011. p. 35–8.

    Chapter  Google Scholar 

  14. Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;4(147):147ra11. doi:10.1126/scitranslmed.3003748.

    Article  Google Scholar 

  15. Jackowski A, Crockard A, Burnstock G, Russell RR, Kristek F. The time course of intracranial pathophysiological changes following experimental subarachnoid haemorrhage in the rat. J Cereb Blood Flow Metab. 1990;10(6):835–49. doi:10.1038/jcbfm.1990.140.

    Article  CAS  PubMed  Google Scholar 

  16. Wang RK, Jacques SL, Ma Z, Hurst S, Hanson SR, Gruber A. Three dimensional optical angiography. Opt Express. 2007;15(7):4083–97.

    Article  PubMed  Google Scholar 

  17. Zhang W, Iliff JJ, Campbell CJ, Wang RK, Hurn PD, Alkayed NJ. Role of soluble epoxide hydrolase in the sex-specific vascular response to cerebral ischemia. J Cereb Blood Flow Metab. 2009;29(8):1475–81. doi:10.1038/jcbfm.2009.65.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jia Y, Alkayed N, Wang RK. Potential of optical microangiography to monitor cerebral blood perfusion and vascular plasticity following traumatic brain injury in mice in vivo. J Biomed Opt. 2009;14(4):040505. doi:10.1117/1.3207121.

    Article  PubMed Central  PubMed  Google Scholar 

  19. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S, et al. Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke. 2009;40(7):2519–25. doi:10.1161/STROKEAHA.109.549592.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Schubert GA, Seiz M, Hegewald AA, Manville J, Thome C. Acute hypoperfusion immediately after subarachnoid hemorrhage: a xenon contrast-enhanced CT study. J Neurotrauma. 2009;26(12):2225–31. doi:10.1089/neu.2009.0924.

    Article  PubMed  Google Scholar 

  21. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52. doi:10.1016/j.neuint.2003.11.006.

    Article  CAS  PubMed  Google Scholar 

  22. Preston SD, Steart PV, Wilkinson A, Nicoll JAR, Weller RO. Capillary and arterial cerebral amyloid angiopathy in Alzheimer’s disease: defining the perivascular route for the elimination of amyloid β from the human brain. Neuropathol Appl Neurobiol. 2003;29(2):106–17. doi:10.1046/j.1365-2990.2003.00424.x.

    Article  CAS  PubMed  Google Scholar 

  23. Schubert GA, Poli S, Mendelowitsch A, Schilling L, Thome C. Hypothermia reduces early hypoperfusion and metabolic alterations during the acute phase of massive subarachnoid hemorrhage: a laser-Doppler-flowmetry and microdialysis study in rats. J Neurotrauma. 2008;25(5):539–48. doi:10.1089/neu.2007.0500.

    Article  PubMed  Google Scholar 

  24. Chung WY, Lee LS. The effect of tissue plasminogen activator (t-PA) on cerebral vasospasm in canine subarachnoid hemorrhage. Zhonghua Yi Xue Za Zhi (Taipei). 1993;52(5):298–306.

    CAS  Google Scholar 

  25. Findlay JM, Weir BKA, Kanamaru K, Grace M, Baughman R. The effect of timing of intrathecal fibrinolytic therapy on cerebral vasospasm in a primate model of subarachnoid hemorrhage. Neurosurgery. 1990;26(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  26. Findlay JM, Weir BKA, Steinke D, Tanabe T, Gordon P, Grace M. Effect of intrathecal thrombolytic therapy on subarachnoid clot and chronic vasospasm in a primate model of SAH. J Neurosurg. 1988;69(5):723–35. doi:10.3171/jns.1988.69.5.0723.

    Article  CAS  PubMed  Google Scholar 

  27. Suzuki H, Kanamaru K, Kuroki M, Sun H, Waga S, Miyazawa T. Effects of unilateral intrathecal administrations of low dose tissue-type plasminogen activator on clot lysis, vasospasm and brain phospholipid hydroperoxidation in a primate model of bilateral subarachnoid hemorrhage. Neurol Res. 1998;20(7):625–31.

    CAS  PubMed  Google Scholar 

  28. Asada M, Kong J, Nakamura M, Tamaki N. Thrombolytic therapy with tissue plasminogen activator for prevention of vasospasm in experimental subarachnoid hemorrhage: its efficacy and problems. Neurol Res. 1996;18(4):342–4.

    CAS  PubMed  Google Scholar 

  29. Kawada S, Kinugasa K, Meguro T, Hirotsune N, Tokunaga K, Kamata I, et al. Experimental study of intracisternal administration of tissue-type plasminogen activator followed by cerebrospinal fluid drainage in the ultra-early stage of subarachnoid haemorrhage. Acta Neurochir (Wien). 1999;141(12):1331–8. doi:10.1007/s007010050438.

    Article  CAS  Google Scholar 

  30. Brinker T, Seifert V, Dietz H. Subacute hydrocephalus after experimental subarachnoid hemorrhage: its prevention by intrathecal fibrinolysis with recombinant tissue plasminogen activator. Neurosurgery. 1992;31(2):306–11. discussion 11–2.

    Article  CAS  PubMed  Google Scholar 

  31. Brinker T, Seifert V, Stolke D. Effect of intrathecal fibrinolysis on cerebrospinal fluid absorption after experimental subarachnoid hemorrhage. J Neurosurg. 1991;74(5):789–93. doi:10.3171/jns.1991.74.5.0789.

    Article  CAS  PubMed  Google Scholar 

  32. Litrico S, Almairac F, Gaberel T, Ramakrishna R, Fontaine D, Sedat J et al. Intraventricular fibrinolysis for severe aneurysmal intraventricular hemorrhage: a randomized controlled trial and meta-analysis. Neurosurg Rev. 2013;36(4):523–30. doi:10.1007/s10143-013-0469-7.

    Google Scholar 

  33. Kinouchi H, Ogasawara K, Shimizu H, Mizoi K, Yoshimoto T. Prevention of symptomatic vasospasm after aneurysmal subarachnoid hemorrhage by intraoperative cisternal fibrinolysis using tissue-type plasminogen activator combined with continuous cisternal drainage. Neurol Med Chir. 2004;44(11):569–77.

    Article  Google Scholar 

  34. Ramakrishna R, Sekhar LN, Ramanathan D, Temkin N, Hallam D, Ghodke BV, et al. Intraventricular tissue plasminogen activator for the prevention of vasospasm and hydrocephalus after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2010;67(1):110–7. doi:10.1227/01.NEU.0000370920.44359.91. discussion 7.

    Article  PubMed  Google Scholar 

  35. Varelas PN, Rickert KL, Cusick J, Hacein-Bey L, Sinson G, Torbey M, et al. Intraventricular hemorrhage after aneurysmal subarachnoid hemorrhage: pilot study of treatment with intraventricular tissue plasminogen activator. Neurosurgery. 2005;56(2):205–13. discussion −13.

    Article  PubMed  Google Scholar 

  36. Findlay JM, Jacka MJ. Cohort study of intraventricular thrombolysis with recombinant tissue plasminogen activator for aneurysmal intraventricular hemorrhage. Neurosurgery. 2004;55(3):532–7. discussion 7–8.

    Article  PubMed  Google Scholar 

  37. Amin-Hanjani S, Ogilvy CS, Barker 2nd FG. Does intracisternal thrombolysis prevent vasospasm after aneurysmal subarachnoid hemorrhage? A meta-analysis. Neurosurgery. 2004;54(2):326–34. discussion 34–5.

    Article  PubMed  Google Scholar 

  38. Roos YB, Rinkel GJ, Vermeulen M, Algra A, van Gijn J. Antifibrinolytic therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev. 2003;2, CD001245. doi:10.1002/14651858.CD001245.

    PubMed  Google Scholar 

  39. Hillman J, Fridriksson S, Nilsson O, Yu Z, Säveland H, Jakobsson K-E. Immediate administration of tranexamic acid and reduced incidence of early rebleeding after aneurysmal subarachnoid hemorrhage: a prospective randomized study. J Neurosurg. 2002;97(4):771–8. doi:10.3171/jns.2002.97.4.0771.

    Article  CAS  PubMed  Google Scholar 

  40. Iplikcioglu AC, Berkman MZ. The effect of short-term antifibrinolytic therapy on experimental vasospasm. Surg Neurol. 2003;59(1):10–6. doi:10.1016/S0090-3019(02)00867-4.

    Article  PubMed  Google Scholar 

  41. Diamond SL, Anand S. Inner clot diffusion and permeation during fibrinolysis. Biophys J. 1993;65(6):2622–43. doi:10.1016/S0006-3495(93)81314-6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Diamond SL. Engineering design of optimal strategies for blood clot dissolution. Annu Rev Biomed Eng. 1999;1(1):427–61. doi:10.1146/annurev.bioeng.1.1.427.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Dominic A. Siler declares that he has no conflict of interest.

Jorge A. Gonzalez declares that he has no conflict of interest.

Ruikang K. Wang declares that he has no conflict of interest.

Justin S. Cetas declares that he has no conflict of interest.

Nabil J. Alkayed declares that he has no conflict of interest.

All institutional and national guidelines for the care and use of laboratory animals were followed.

Funding Sources

Dominic A. Siler—NHLBI F30 HL108624, Oregon Brain Institute.

Nabil J. Alkayed—NINDS R01 NS044313 and NS070837

Ruikang K. Wang—NHLBI R01 HL093140 and NIBIB R01 EB009682

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil J. Alkayed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siler, D.A., Gonzalez, J.A., Wang, R.K. et al. Intracisternal Administration of Tissue Plasminogen Activator Improves Cerebrospinal Fluid Flow and Cortical Perfusion After Subarachnoid Hemorrhage in Mice. Transl. Stroke Res. 5, 227–237 (2014). https://doi.org/10.1007/s12975-014-0329-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-014-0329-y

Keywords

Navigation